Nothing
#' cTRAP package
#'
#' Compare differential gene expression results with those from big datasets
#' (e.g. CMap), allowing to infer which types of perturbations may explain the
#' observed difference in gene expression.
#'
#' \strong{Input:} To use this package, a named vector of differentially
#' expressed gene metric is needed, where its values represent the significance
#' and magnitude of the differentially expressed genes (e.g. t-statistic) and
#' its names are gene symbols.
#'
#' \strong{Workflow:} The differentially expressed genes will be compared
#' against selected perturbation conditions by:
#' \itemize{
#' \item{Spearman or Pearson correlation with z-scores of differentially
#' expressed genes after perturbations from CMap. Use function
#' \code{\link{rankSimilarPerturbations}} with \code{method = "spearman"} or
#' \code{method = "pearson"}}
#' \item{Gene set enrichment analysis (GSEA) using the (around) 12 000 genes
#' from CMap. Use function \code{\link{rankSimilarPerturbations}} with
#' \code{method = gsea}.}
#' }
#'
#' Available perturbation conditions for CMap include:
#' \itemize{
#' \item{Cell line(s).}
#' \item{Perturbation type (gene knockdown, gene upregulation or drug
#' intake).}
#' \item{Drug concentration.}
#' \item{Time points.}
#' }
#'
#' Values for each perturbation type can be listed with
#' \code{getCMapPerturbationTypes()}
#'
#' \strong{Output:} The output includes a data frame of ranked perturbations
#' based on the associated statistical values and respective p-values.
#'
#' @name cTRAP
#' @docType package
NULL
#' ENCODE metadata sample
#'
#' @description
#' ENCODE metadata sample obtained by running the following code:
#'
#' \preformatted{
#' gene <- "EIF4G1"
#' cellLine <- "HepG2"
#' ENCODEmetadata <- downloadENCODEknockdownMetadata(cellLine, gene)
#'
#' table(ENCODEmetadata$`Experiment target`)
#' length(unique(ENCODEmetadata$`Experiment target`))
#' }
#'
#' @name ENCODEmetadata
#' @docType data
#' @keywords internal
NULL
#' Gene expression data sample
#'
#' @description
#' Gene expression data sample obtained by running the following code:
#'
#' \preformatted{
#' data("ENCODEmetadata")
#' ENCODEsamples <- loadENCODEsamples(ENCODEmetadata)[[1]]
#' counts <- prepareENCODEgeneExpression(ENCODEsamples)
#'
#' # Remove low coverage (at least 10 counts shared across two samples)
#' minReads <- 10
#' minSamples <- 2
#' filter <- rowSums(counts[ , -c(1, 2)] >= minReads) >= minSamples
#' counts <- counts[filter, ]
#'
#' # Convert ENSEMBL identifier to gene symbol
#' counts$gene_id <- convertENSEMBLtoGeneSymbols(counts$gene_id)
#' }
#'
#' @name counts
#' @docType data
#' @keywords internal
NULL
#' Differential expression's t-statistics sample
#'
#' @description
#' Differential expression's t-statistics sample obtained by running the
#' following code:
#'
#' \preformatted{
#' data("counts")
#'
#' # Perform differential gene expression analysis
#' diffExpr <- performDifferentialExpression(counts)
#'
#' # Get t-statistics of differential expression with respective gene names
#' diffExprStat <- diffExpr$t
#' names(diffExprStat) <- diffExpr$Gene_symbol
#' }
#'
#' @name diffExprStat
#' @docType data
#' @keywords internal
NULL
#' CMap metadata
#'
#' @description
#' CMap metadata obtained by running the following code:
#'
#' \preformatted{
#' cmapMetadata <- filterCMapMetadata("cmapMetadata.txt", cellLine = "HEPG2",
#' timepoint = "2 h")
#' }
#'
#' @name cmapMetadata
#' @docType data
#' @keywords internal
NULL
#' CMap perturbations sample for knockdown experiments
#'
#' @description
#' CMap perturbations sample for knockdown experiments obtained by running the
#' following code:
#'
#' \preformatted{
#' # Code for loading CMap gene KD HepG2 data
#' cellLine <- "HepG2"
#' cmapMetadataKD <- filterCMapMetadata(
#' "cmapMetadata.txt", cellLine=cellLine,
#' perturbationType="Consensus signature from shRNAs targeting the same gene")
#'
#' cmapPerturbationsKD <- prepareCMapPerturbations(
#' cmapMetadataKD, "cmapZscores.gctx", "cmapGeneInfo.txt",
#' loadZscores=TRUE)
#'
#' data("diffExprStat")
#' compareKD <- rankSimilarPerturbations(diffExprStat, cmapPerturbationsKD)
#'
#' # Select only some perturbations (to reduce file size)
#' filter <- c(head(order(compareKD$spearman_rank)),
#' tail(order(compareKD$spearman_rank)),
#' head(order(compareKD$pearson_rank)),
#' tail(order(compareKD$pearson_rank)),
#' head(order(compareKD$gsea_rank)),
#' tail(order(compareKD$gsea_rank)))
#' filter <- unique(compareKD[[1]][filter])
#' cmapPerturbationsKD <- cmapPerturbationsKD[ , filter]
#'
#' # Remove non-ASCII characters for portability reasons
#' metadata <- attr(cmapPerturbationsKD, "metadata")
#' metadata$pert_idose <- gsub("\u00B5", "micro", metadata$pert_idose)
#' metadata$pert_dose_unit <- gsub("\u00B5", "micro", metadata$pert_dose_unit)
#' attr(cmapPerturbationsKD, "metadata") <- metadata
#' }
#'
#' @name cmapPerturbationsKD
#' @docType data
#' @keywords internal
NULL
#' CMap perturbations sample for small molecules
#'
#' @description
#' CMap perturbations sample for small molecules obtained by running the
#' following code:
#'
#' \preformatted{
#' cellLine <- c("HepG2", "HUH7")
#' cmapMetadataCompounds <- filterCMapMetadata(
#' "cmapMetadata.txt", cellLine=cellLine, timepoint="24 h",
#' dosage="5 \u00B5M", perturbationType="Compound")
#'
#' cmapPerturbationsCompounds <- prepareCMapPerturbations(
#' cmapMetadataCompounds, "cmapZscores.gctx", "cmapGeneInfo.txt",
#' "cmapCompoundInfo_drugs.txt", loadZscores=TRUE)
#'
#' # Remove non-ASCII characters for portability reasons
#' metadata <- attr(cmapPerturbationsCompounds, "metadata")
#' metadata$pert_idose <- gsub("\u00B5", "micro", metadata$pert_idose)
#' metadata$pert_dose_unit <- gsub("\u00B5", "micro", metadata$pert_dose_unit)
#' attr(cmapPerturbationsCompounds, "metadata") <- metadata
#' }
#'
#' @name cmapPerturbationsCompounds
#' @docType data
#' @keywords internal
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.