Nothing
#' Molecular signature discovery from omics data
#'
#' Feature selection is critical in omics data analysis to extract restricted
#' and meaningful molecular signatures from complex and high-dimension data, and
#' to build robust classifiers. This package implements a new method to assess
#' the relevance of the variables for the prediction performances of the
#' classifier. The approach can be run in parallel with the PLS-DA, Random
#' Forest, and SVM binary classifiers. The signatures and the corresponding
#' 'restricted' models are returned, enabling future predictions on new
#' datasets. A Galaxy implementation of the package is available within the
#' Workflow4metabolomics.org online infrastructure for computational
#' metabolomics.
#'
#' @import methods e1071 randomForest ropls
#' @importFrom Biobase ExpressionSet exprs pData
#' @importFrom grDevices dev.new dev.off pdf png
#' @importFrom graphics abline arrows axis box boxplot image layout mtext par rect title
#' @importFrom stats median var
#' @importFrom utils head tail
#'
#' @name biosigner-package
#' @aliases biosigner-package biosigner
#' @docType package
#' @author Philippe Rinaudo <phd.rinaudo@@gmail.com> and Etienne Thevenot
#' <etienne.thevenot@@cea.fr>.
#'
#' Maintainer: Philippe Rinaudo <phd.rinaudo@@gmail.com>
#' @keywords package
#' @examples
#'
#' ## loading the diaplasma dataset
#'
#' data(diaplasma)
#' attach(diaplasma)
#'
#' ## restricting to a smaller dataset for this example
#'
#' featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
#' dataMatrix <- dataMatrix[, featureSelVl]
#' variableMetadata <- variableMetadata[featureSelVl, ]
#'
#' ## signature selection for all 3 classifiers
#' ## a bootI = 5 number of bootstraps is used for this example
#' ## we recommend to keep the default bootI = 50 value for your analyzes
#'
#' set.seed(123)
#' diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)
#'
#' detach(diaplasma)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.