Nothing
dasen.gds <- function(gds,
node,
mns,
uns,
onetwo,
roco,
fudge,
ret2
){ # {{{
# Assuming that mns and uns are 1 element character strings!not gdsn.nodes
if(length(mns) == 1) mns <- index.gdsn(gds, mns)
if(length(uns) == 1) uns <- index.gdsn(gds, uns)
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
# NORMALIZING
dfsfit.gdsn(f, targetnode = mns, roco = roco, newnode = "mnsc",
onetwo = onetwo)
dfsfit.gdsn(f, targetnode = uns, roco = NULL, newnode = "unsc",
onetwo = onetwo)
## Splitting arrays by probe Type
# Initiliazing new nodes
mI <- add.gdsn(f, "metI" , storage = "float64",
valdim = c(sum(onetwo=='I'), 0),val = NULL, replace = TRUE)
mII <- add.gdsn(f, "metII" , storage = "float64",
valdim = c(sum(onetwo=='II'), 0), val = NULL, replace = TRUE)
uI <- add.gdsn(f, "umeI" , storage = "float64",
valdim = c(sum(onetwo=='I'), 0), val = NULL, replace = TRUE)
uII <- add.gdsn(f, "umeII" , storage = "float64",
valdim = c(sum(onetwo=='II'), 0), val = NULL, replace = TRUE)
# Separating probes into type I and II and appending to object col by col.
for(x in 1:dim[2]){
append.gdsn(mI , readex.gdsn(index.gdsn(f, "mnsc"),
sel = list(onetwo=='I' , x)))
append.gdsn(mII, readex.gdsn(index.gdsn(f, "mnsc"),
sel = list(onetwo=='II', x)))
append.gdsn(uI , readex.gdsn(index.gdsn(f, "unsc"),
sel = list(onetwo=='I' , x)))
append.gdsn(uII, readex.gdsn(index.gdsn(f, "unsc"),
sel = list(onetwo=='II', x)))
}
# Normalize seperately using qn.gdsn
qn.gdsn(f, target = mI , newnode = "metIqn" )
qn.gdsn(f, target = mII, newnode = "metIIqn")
qn.gdsn(f, target = uI , newnode = "umeIqn" )
qn.gdsn(f, target = uII, newnode = "umeIIqn")
# Relcalculating betas
# Creating new node where normalized betas will be stored. / replacement
n.t <- add.gdsn(gds, name = node, storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
meth <- rep(x = NA, times = dim[1])
unmeth <- rep(x = NA, times = dim[1])
meth[onetwo == 'I'] <- readex.gdsn(index.gdsn(f, "metIqn"),
sel = list(NULL , x))
meth[onetwo == 'II'] <- readex.gdsn(index.gdsn(f, "metIIqn"),
sel = list(NULL , x))
unmeth[onetwo == 'I'] <- readex.gdsn(index.gdsn(f, "umeIqn"),
sel = list(NULL , x))
unmeth[onetwo == 'II'] <- readex.gdsn(index.gdsn(f, "umeIIqn"),
sel = list(NULL , x))
beta <- meth/(meth + unmeth + fudge)
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, meth)
append.gdsn(n.u, unmeth)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
naten.gds <- function( gds,
node,
mns,
uns,
fudge,
ret2
){ # {{{
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## NORMALIZING
qn.gdsn(f, target = mns, newnode = "natenmeth")
qn.gdsn(f, target = uns, newnode = "natenunmeth")
## Recalculating Betas
# Creating new node for betas.
n.t <- add.gdsn(gds, name = node , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
mn <- readex.gdsn(index.gdsn(f , "natenmeth"), sel = list(NULL, x))
un <- readex.gdsn(index.gdsn(f,"natenunmeth"), sel = list(NULL, x))
beta <- mn / ( mn + un + fudge )
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, mn)
append.gdsn(n.u, un)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
danen.gds <- function( gds,
node,
mns,
uns,
onetwo,
roco,
fudge,
ret2
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## NORMALIZING
dfsfit.gdsn(f, targetnode = mns, roco = roco,
newnode = "mnsc", onetwo = onetwo)
dfsfit.gdsn(f, targetnode = uns, roco = NULL,
newnode = "unsc", onetwo = onetwo)
## Recalculating Betas
# Creating new node for betas
n.t <- add.gdsn(gds, name = node , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
mn <- readex.gdsn(index.gdsn(f, "mnsc"), sel = list(NULL, x))
un <- readex.gdsn(index.gdsn(f, "unsc"), sel = list(NULL, x))
beta <- mn / ( mn + un + fudge )
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, mn)
append.gdsn(n.u, un)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
daten1.gds <- function(gds,
node,
mns,
uns,
onetwo,
roco,
fudge,
ret2
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## NORMALIZING
dfsfit.gdsn(f, targetnode = mns, roco = roco,
newnode = "mnsc", onetwo = onetwo)
dfsfit.gdsn(f, targetnode = uns, roco = NULL,
newnode = "unsc", onetwo = onetwo)
qn.gdsn(f, target = index.gdsn(f,"mnsc"), newnode = "daten1meth")
qn.gdsn(f, target = index.gdsn(f,"unsc"), newnode = "daten1unmeth")
## Recalculating Betas
# Creating new node for betas
n.t <- add.gdsn(gds, name = node , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
mn <- readex.gdsn(index.gdsn(f, "daten1meth"), sel = list(NULL, x))
un <- readex.gdsn(index.gdsn(f, "daten1unmeth"), sel = list(NULL, x))
beta <- mn / ( mn + un + fudge )
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, mn)
append.gdsn(n.u, un)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
daten2.gds <- function(gds,
node,
mns,
uns,
onetwo,
roco,
fudge,
ret2
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## NORMALIZATION
dfsfit.gdsn(f, targetnode = mns, roco = roco,
newnode = "mnsc", onetwo = onetwo)
dfsfit.gdsn(f, targetnode = uns, roco = roco,
newnode = "unsc", onetwo = onetwo)
qn.gdsn(f, target = index.gdsn(f,"mnsc"), newnode = "daten2meth")
qn.gdsn(f, target = index.gdsn(f,"unsc"), newnode = "daten2unmeth")
## Recalculating Betas
# Adding new node for betas
n.t <- add.gdsn(gds, name = node, storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
mn <- readex.gdsn(index.gdsn(f, "daten2meth"), sel = list(NULL, x))
un <- readex.gdsn(index.gdsn(f, "daten2unmeth"), sel = list(NULL, x))
beta <- mn / ( mn + un + fudge )
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, mn)
append.gdsn(n.u, un)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
nasen.gds <- function(gds ,
node,
mns,
uns,
onetwo,
fudge,
ret2
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## Normalization
## Splitting arrays by probe Type
# Initiliazing new nodes
mI <- add.gdsn(f, "metI" , storage = "float64",
valdim = c(sum(onetwo=='I'), 0), val = NULL, replace = TRUE)
mII <- add.gdsn(f, "metII" , storage = "float64",
valdim = c(sum(onetwo=='II'), 0), val = NULL, replace = TRUE)
uI <- add.gdsn(f, "umeI" , storage = "float64",
valdim = c(sum(onetwo=='I'), 0), val = NULL, replace = TRUE)
uII <- add.gdsn(f, "umeII" , storage = "float64",
valdim = c(sum(onetwo=='II'), 0), val = NULL, replace = TRUE)
# Separating probes
for(x in 1:dim[2]){
append.gdsn(mI , readex.gdsn(mns, sel = list(onetwo == 'I' , x)))
append.gdsn(mII, readex.gdsn(mns, sel = list(onetwo == 'II', x)))
append.gdsn(uI , readex.gdsn(uns, sel = list(onetwo == 'I' , x)))
append.gdsn(uII, readex.gdsn(uns, sel = list(onetwo == 'II', x)))
}
# Norm
qn.gdsn(f, target = mI , newnode = "metIqn" )
qn.gdsn(f, target = mII, newnode = "metIIqn")
qn.gdsn(f, target = uI , newnode = "umeIqn" )
qn.gdsn(f, target = uII, newnode = "umeIIqn")
## Recalculating Betas
# Adding new node
n.t <- add.gdsn(gds, name = node, storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
meth <- rep(x = NA, times = dim[1])
unmeth <- rep(x = NA, times = dim[1])
meth[onetwo == 'I'] <- readex.gdsn(index.gdsn(f, "metIqn"),
sel = list(NULL , x))
meth[onetwo == 'II'] <- readex.gdsn(index.gdsn(f, "metIIqn"),
sel = list(NULL , x))
unmeth[onetwo == 'I'] <- readex.gdsn(index.gdsn(f, "umeIqn"),
sel = list(NULL , x))
unmeth[onetwo == 'II'] <- readex.gdsn(index.gdsn(f, "umeIIqn"),
sel = list(NULL , x))
beta <- meth/(meth + unmeth + fudge)
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, meth)
append.gdsn(n.u, unmeth)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
nanet.gds <- function( gds,
node,
mns,
uns,
fudge,
ret2
){ # {{{
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## Normalization
db.gdsn(f, mns, uns)
## Recalculating Betas
# Adding new node for betas
n.t <- add.gdsn(gds, name = node , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
mn <- readex.gdsn(index.gdsn(f, "db.meth"), sel = list(NULL, x))
un <- readex.gdsn(index.gdsn(f, "db.unmeth"), sel = list(NULL, x))
beta <- mn / ( mn + un + fudge )
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, mn)
append.gdsn(n.u, un)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
danet.gds <- function( gds,
node,
mns,
uns,
onetwo,
roco,
fudge,
ret2
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
dim <- objdesp.gdsn(mns)$dim
## Normalization
dfsfit.gdsn(f, targetnode = mns, roco = roco,
newnode = "mnsc", onetwo = onetwo)
dfsfit.gdsn(f, targetnode = uns, roco = roco,
newnode = "unsc", onetwo = onetwo)
db.gdsn(f, mns = index.gdsn(f, "mnsc"), uns = index.gdsn(f, "unsc"))
## Recalculating Betas
# Adding new node for betas
n.t <- add.gdsn(gds, name = node, storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated", storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
mn <- readex.gdsn(index.gdsn(gds, "db.meth"), sel = list(NULL, x))
un <- readex.gdsn(index.gdsn(gds, "db.unmeth"), sel = list(NULL, x))
beta <- mn / ( mn + un + fudge )
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, mn)
append.gdsn(n.u, un)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
nanes.gds <- function( gds,
node,
mns,
uns,
onetwo,
fudge,
ret2
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
met <- mns
ume <- uns
dim <- objdesp.gdsn(met)$dim
## Splitting arrays by probe Type
# Initiliazing new nodes
mI <- add.gdsn(f, "metI" , storage = "float64",
valdim = c(sum(onetwo == 'I'), 0), val = NULL, replace = TRUE)
mII <- add.gdsn(f, "metII" , storage = "float64",
valdim = c(sum(onetwo == 'II'), 0), val = NULL,replace = TRUE)
uI <- add.gdsn(f, "umeI" , storage = "float64",
valdim = c(sum(onetwo == 'I'), 0), val = NULL, replace = TRUE)
uII <- add.gdsn(f, "umeII" , storage = "float64",
valdim = c(sum(onetwo == 'II'), 0), val = NULL,replace = TRUE)
# Separating probes
for(x in 1:dim[2]){
append.gdsn(mI , readex.gdsn(met, sel = list(onetwo == 'I' , x)))
append.gdsn(mII, readex.gdsn(met, sel = list(onetwo == 'II', x)))
append.gdsn(uI , readex.gdsn(ume, sel = list(onetwo == 'I' , x)))
append.gdsn(uII, readex.gdsn(ume, sel = list(onetwo == 'II', x)))
}
## Normalization per nanes method
qn.gdsn(f, target = index.gdsn(f,"metI"), newnode = "metIqn")
qn.gdsn(f, target = index.gdsn(f,"umeI"), newnode = "umeIqn")
db.gdsn(f, mns = index.gdsn(f,"metII"), uns = index.gdsn(f, "umeII"))
## Recalculating Betas
# Initialising nodes for betas, meth and unmeth
n.t <- add.gdsn(gds, name = node , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
if(ret2 == TRUE){
n.m <- add.gdsn(gds, "methylated" , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
n.u <- add.gdsn(gds, "unmethylated" , storage = "float64",
valdim = c(dim[1], 0), val = NULL, replace = TRUE)
}
for(x in 1:dim[2]){
meth <- rep(x = NA, times = dim[1])
unmeth <- rep(x = NA, times = dim[1])
meth[onetwo == 'I'] <- readex.gdsn(index.gdsn(f, "metIqn"),
sel = list(NULL , x))
meth[onetwo == 'II'] <- readex.gdsn(index.gdsn(f, "db.meth"),
sel = list(NULL , x))
unmeth[onetwo == 'I'] <- readex.gdsn(index.gdsn(f, "umeIqn"),
sel = list(NULL , x))
unmeth[onetwo == 'II'] <- readex.gdsn(index.gdsn(f,"db.unmeth"),
sel = list(NULL , x))
beta <- meth/(meth + unmeth + fudge)
append.gdsn(n.t, beta)
if(ret2 == TRUE){
append.gdsn(n.m, meth)
append.gdsn(n.u, unmeth)
}
}
closefn.gds(f)
unlink("temp.gds", force = TRUE)
} # }}}
danes.gds <- function( gds,
node,
mns,
uns,
onetwo,
fudge,
ret2,
...
){ # {{{
if(length(onetwo) == 1) onetwo <- read.gdsn(index.gdsn(gds, onetwo))
if(class(onetwo) == 'gdsn.class') onetwo <- read.gdsn(onetwo)
f.f <- createfn.gds("tempdanes.gds", allow.duplicate = TRUE)
## Normalization
dfsfit.gdsn(gds = f.f, targetnode = mns, newnode = "mnsc",
onetwo = onetwo, ...) # roco = NULL?
dfsfit.gdsn(gds = f.f, targetnode = uns, newnode = "unsc",
onetwo = onetwo, ...) # roco = NULL?
nanes.gds( gds = gds,
node = node,
mns = index.gdsn(f.f,"mnsc"),
uns = index.gdsn(f.f,"unsc"),
onetwo = onetwo,
fudge = fudge,
ret2 = ret2
)
closefn.gds(f.f)
unlink("tempdanes.gds", force = TRUE)
} # }}}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.