Nothing
## ----setup,include=FALSE------------------------------------------------------
# load ViSEAGO and mouse db package
library(ViSEAGO)
# knitr document options
knitr::opts_chunk$set(
eval=FALSE,echo=TRUE,fig.pos = 'H',
fig.width=6,message=FALSE,comment=NA,warning=FALSE
)
## ----vignette_data_used,eval=TRUE---------------------------------------------
# load vignette data
data(
myGOs,
package="ViSEAGO"
)
## ----geneList_input,eval=TRUE-------------------------------------------------
# load genes identifiants (GeneID,ENS...) background (expressed genes)
background<-scan(
system.file(
"extdata/data/input",
"background_L.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
# load Differentialy Expressed (DE) gene identifiants from lists
PregnantvsLactateDE<-scan(
system.file(
"extdata/data/input",
"pregnantvslactateDE.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
VirginvsLactateDE<-scan(
system.file(
"extdata/data/input",
"virginvslactateDE.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
VirginvsPregnantDE<-scan(
system.file(
"extdata/data/input",
"virginvspregnantDE.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
## ----geneList_input-head,echo=FALSE-------------------------------------------
# # show the ten first lines of genes_DE (same as genes_ref)
# head(PregnantvsLactateDE)
## ----Genomic-ressources-------------------------------------------------------
# # connect to Bioconductor
# Bioconductor<-ViSEAGO::Bioconductor2GO()
#
# # load GO annotations from Bioconductor
# myGENE2GO<-ViSEAGO::annotate(
# "org.Mm.eg.db",
# Bioconductor
# )
## ----Genomic-ressources_show--------------------------------------------------
# # display summary
# myGENE2GO
## ----Genomic-ressources_display,echo=FALSE,eval=TRUE--------------------------
cat(
"- object class: gene2GO
- database: Bioconductor
- stamp/version: 2019-Jul10
- organism id: org.Mm.eg.db
GO annotations:
- Molecular Function (MF): 22707 annotated genes with 91986 terms (4121 unique terms)
- Biological Process (BP): 23210 annotated genes with 164825 terms (12224 unique terms)
- Cellular Component (CC): 23436 annotated genes with 107852 terms (1723 unique terms)"
)
## ----Enrichment_data----------------------------------------------------------
# # create topGOdata for BP for each list of DE genes
# BP_PregnantvsLactate<-ViSEAGO::create_topGOdata(
# geneSel=PregnantvsLactateDE,
# allGenes=background,
# gene2GO=myGENE2GO,
# ont="BP",
# nodeSize=5
# )
#
# BP_VirginvsLactate<-ViSEAGO::create_topGOdata(
# geneSel=VirginvsLactateDE,
# allGenes=background,
# gene2GO=myGENE2GO,
# ont="BP",
# nodeSize=5
# )
#
# BP_VirginvsPregnant<-ViSEAGO::create_topGOdata(
# geneSel=VirginvsPregnantDE,
# allGenes=background,
# gene2GO=myGENE2GO,
# ont="BP",
# nodeSize=5
# )
## ----Enrichment_data_tests----------------------------------------------------
# # perform topGO tests
# elim_BP_PregnantvsLactate<-topGO::runTest(
# BP_PregnantvsLactate,
# algorithm ="elim",
# statistic = "fisher",
# cutOff=0.01
# )
#
# elim_BP_VirginvsLactate<-topGO::runTest(
# BP_VirginvsLactate,
# algorithm ="elim",
# statistic = "fisher",
# cutOff=0.01
# )
#
# elim_BP_VirginvsPregnant<-topGO::runTest(
# BP_VirginvsPregnant,
# algorithm ="elim",
# statistic = "fisher",
# cutOff=0.01
# )
## ----Enrichment_merge---------------------------------------------------------
# # merge topGO results
# BP_sResults<-ViSEAGO::merge_enrich_terms(
# cutoff=0.01,
# Input=list(
# PregnantvsLactate=c(
# "BP_PregnantvsLactate",
# "elim_BP_PregnantvsLactate"
# ),
# VirginvsLactate=c(
# "BP_VirginvsLactate",
# "elim_BP_VirginvsLactate"
# ),
# VirginvsPregnant=c(
# "BP_VirginvsPregnant",
# "elim_BP_VirginvsPregnant"
# )
# )
# )
## ----Enrichment_merge_show----------------------------------------------------
# # display a summary
# BP_sResults
## ----Enrichment_merge_display,echo=FALSE,eval=TRUE----------------------------
cat(
"- object class: enrich_GO_terms
- ontology: BP
- method: topGO
- summary:PregnantvsLactate
BP_PregnantvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 7699
feasible_genes: 14091
feasible_genes_significant: 7044
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_PregnantvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 199
feasible_genes: 14091
feasible_genes_significant: 7044
genes_nodeSize: 5
Nontrivial_nodes: 8433
VirginvsLactate
BP_VirginvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 9583
feasible_genes: 14091
feasible_genes_significant: 8734
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_VirginvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 152
feasible_genes: 14091
feasible_genes_significant: 8734
genes_nodeSize: 5
Nontrivial_nodes: 8457
VirginvsPregnant
BP_VirginvsPregnant
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 7302
feasible_genes: 14091
feasible_genes_significant: 6733
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_VirginvsPregnant
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 243
feasible_genes: 14091
feasible_genes_significant: 6733
genes_nodeSize: 5
Nontrivial_nodes: 8413
- enrichment pvalue cutoff:
PregnantvsLactate : 0.01
VirginvsLactate : 0.01
VirginvsPregnant : 0.01
- enrich GOs (in at least one list): 521 GO terms of 3 conditions.
PregnantvsLactate : 199 terms
VirginvsLactate : 152 terms
VirginvsPregnant : 243 terms"
)
## ----Enrichment_merge_table---------------------------------------------------
# # show table in interactive mode
# ViSEAGO::show_table(BP_sResults)
## ----Enrichment_merge_count---------------------------------------------------
# # barchart of significant (or not) GO terms by comparison
# ViSEAGO::GOcount(BP_sResults)
## ----Enrichment_merge_interactions--------------------------------------------
# # display intersections
# ViSEAGO::Upset(
# BP_sResults,
# file="upset.xls"
# )
## ----SS_build-----------------------------------------------------------------
# # create GO_SS-class object
# myGOs<-ViSEAGO::build_GO_SS(
# gene2GO=myGENE2GO,
# enrich_GO_terms=BP_sResults
# )
## ----SS_compute---------------------------------------------------------------
# # compute Semantic Similarity (SS)
# myGOs<-ViSEAGO::compute_SS_distances(
# myGOs,
# distance="Wang"
# )
## ----SS_build_compute_show----------------------------------------------------
# # display a summary
# myGOs
## ----SS_build_compute_display,echo=FALSE,eval=TRUE----------------------------
cat(
"- object class: GO_SS
- ontology: BP
- method: topGO
- summary:
PregnantvsLactate
BP_PregnantvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 7699
feasible_genes: 14091
feasible_genes_significant: 7044
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_PregnantvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 199
feasible_genes: 14091
feasible_genes_significant: 7044
genes_nodeSize: 5
Nontrivial_nodes: 8433
VirginvsLactate
BP_VirginvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 9583
feasible_genes: 14091
feasible_genes_significant: 8734
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_VirginvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 152
feasible_genes: 14091
feasible_genes_significant: 8734
genes_nodeSize: 5
Nontrivial_nodes: 8457
VirginvsPregnant
BP_VirginvsPregnant
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 7302
feasible_genes: 14091
feasible_genes_significant: 6733
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_VirginvsPregnant
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 243
feasible_genes: 14091
feasible_genes_significant: 6733
genes_nodeSize: 5
Nontrivial_nodes: 8413
- enrichment pvalue cutoff:
PregnantvsLactate : 0.01
VirginvsLactate : 0.01
VirginvsPregnant : 0.01
- enrich GOs (in at least one list): 521 GO terms of 3 conditions.
PregnantvsLactate : 199 terms
VirginvsLactate : 152 terms
VirginvsPregnant : 243 terms
- terms distances: Wang"
)
## ----SS_terms_mdsplot---------------------------------------------------------
# # MDSplot
# ViSEAGO::MDSplot(myGOs)
## ----SS_Wang-wardD2-----------------------------------------------------------
# # Create GOterms heatmap
# Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=FALSE,
# showGOlabels =FALSE,
# GO.tree=list(
# tree=list(
# distance="Wang",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# pamStage=TRUE,
# pamRespectsDendro=TRUE,
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----SS_Wang-wardD2_heatmap_display-------------------------------------------
# # display the heatmap
# ViSEAGO::show_heatmap(
# Wang_clusters_wardD2,
# "GOterms"
# )
## ----SS_Wang-ward.D2_table----------------------------------------------------
# # display table
# ViSEAGO::show_table(
# Wang_clusters_wardD2
# )
## ----SS_Wang-ward.D2_mdsplot--------------------------------------------------
# # colored MDSplot
# ViSEAGO::MDSplot(
# Wang_clusters_wardD2,
# "GOterms"
# )
## ----SS_Wang-wardD2_groups----------------------------------------------------
# # calculate semantic similarites between clusters of GO terms
# Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances(
# Wang_clusters_wardD2,
# distance="BMA"
# )
## ----SS_Wang-ward.D2_groups_mdsplot-------------------------------------------
# # MDSplot
# ViSEAGO::MDSplot(
# Wang_clusters_wardD2,
# "GOclusters"
# )
## ----SS_Wang-wardD2_groups_heatmap--------------------------------------------
# # GOclusters heatmap
# Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap(
# Wang_clusters_wardD2,
# tree=list(
# distance="BMA",
# aggreg.method="ward.D2"
# )
# )
## ----SS_Wang-ward.D2_groups_heatmap_display-----------------------------------
# # display the heatmap
# ViSEAGO::show_heatmap(
# Wang_clusters_wardD2,
# "GOclusters"
# )
## ----SS_Wang-wardD2_groups_show-----------------------------------------------
# # display a summary
# Wang_clusters_wardD2
## ----SS_Wang-wardD2_groups_display,echo=FALSE,eval=TRUE-----------------------
cat(
"- object class: GO_clusters
- ontology: BP
- method: topGO
- summary:
PregnantvsLactate
BP_PregnantvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 7699
feasible_genes: 14091
feasible_genes_significant: 7044
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_PregnantvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 199
feasible_genes: 14091
feasible_genes_significant: 7044
genes_nodeSize: 5
Nontrivial_nodes: 8433
VirginvsLactate
BP_VirginvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 9583
feasible_genes: 14091
feasible_genes_significant: 8734
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_VirginvsLactate
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 152
feasible_genes: 14091
feasible_genes_significant: 8734
genes_nodeSize: 5
Nontrivial_nodes: 8457
VirginvsPregnant
BP_VirginvsPregnant
description: Bioconductor org.Mm.eg.db 2019-Jul10
available_genes: 15804
available_genes_significant: 7302
feasible_genes: 14091
feasible_genes_significant: 6733
genes_nodeSize: 5
nodes_number: 8463
edges_number: 19543
elim_BP_VirginvsPregnant
description: Bioconductor org.Mm.eg.db 2019-Jul10
test_name: fisher p<0.01
algorithm_name: elim
GO_scored: 8463
GO_significant: 243
feasible_genes: 14091
feasible_genes_significant: 6733
genes_nodeSize: 5
Nontrivial_nodes: 8413
- enrichment pvalue cutoff:
PregnantvsLactate : 0.01
VirginvsLactate : 0.01
VirginvsPregnant : 0.01
- enrich GOs (in at least one list): 521 GO terms of 3 conditions.
PregnantvsLactate : 199 terms
VirginvsLactate : 152 terms
VirginvsPregnant : 243 terms
- terms distances: Wang
- clusters distances: BMA
- Heatmap:
* GOterms: TRUE
- GO.tree:
tree.distance: Wang
tree.aggreg.method: ward.D2
cut.dynamic.pamStage: TRUE
cut.dynamic.pamRespectsDendro: TRUE
cut.dynamic.deepSplit: 2
cut.dynamic.minClusterSize: 2
number of clusters: 62
clusters min size: 2
clusters mean size: 8
clusters max size: 32
- sample.tree: FALSE
* GOclusters: TRUE
- tree:
distance: BMA
aggreg.method: ward.D2"
)
## ----session,eval=TRUE,echo=FALSE---------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.