Nothing
## ----setup,include=FALSE------------------------------------------------------
# koad ViSEAGO
library(ViSEAGO)
# knitr document options
knitr::opts_chunk$set(
eval=FALSE,echo=TRUE,fig.pos = 'H',
fig.width=8,message=FALSE,comment=NA,warning=FALSE
)
## ----ViSEAGO_install----------------------------------------------------------
# # Install ViSEAGO package from Bioconductor
# BiocManager::install("ViSEAGO")
## ----geneList_input_topGO-----------------------------------------------------
# # load genes background
# background<-scan(
# "background.txt",
# quiet=TRUE,
# what=""
# )
#
# # load gene selection
# selection<-scan(
# "selection.txt",
# quiet=TRUE,
# what=""
# )
## ----geneList_input_fgsea-----------------------------------------------------
# # load gene identifiers column 1) and corresponding statistical value (column 2)
# table<-data.table::fread("table.txt")
#
# # rank gene identifiers according statistical value
# data.table::setorder(table,value)
## ----databases----------------------------------------------------------------
# # connect to Bioconductor
# Bioconductor<-ViSEAGO::Bioconductor2GO()
#
# # connect to EntrezGene
# EntrezGene<-ViSEAGO::EntrezGene2GO()
#
# # connect to Ensembl
# Ensembl<-ViSEAGO::Ensembl2GO()
#
# # connect to Uniprot-GOA
# Uniprot<-ViSEAGO::Uniprot2GO()
#
# # connect to Custom file
# Custom<-ViSEAGO::Custom2GO(system.file("extdata/customfile.txt",package = "ViSEAGO"))
## ----organisms----------------------------------------------------------------
# # Display table of available organisms with Bioconductor
# ViSEAGO::available_organisms(Bioconductor)
#
# # Display table of available organisms with EntrezGene
# ViSEAGO::available_organisms(EntrezGene)
#
# # Display table of available organisms with Ensembl
# ViSEAGO::available_organisms(Ensembl)
#
# # Display table of available organisms with Uniprot
# ViSEAGO::available_organisms(Uniprot)
#
# # Display table of available organisms with Custom
# ViSEAGO::available_organisms(Custom)
## ----annotate-----------------------------------------------------------------
# # load GO annotations from Bioconductor
# myGENE2GO<-ViSEAGO::annotate(
# "bioconductor_id",
# Bioconductor
# )
#
# # load GO annotations from EntrezGene
# myGENE2GO<-ViSEAGO::annotate(
# "EntrezGene_id",
# EntrezGene
# )
#
# # load GO annotations from EntrezGene
# # with the add of GO annotations from orthologs genes (see above)
# myGENE2GO<-ViSEAGO::annotate(
# "EntrezGene_id",
# EntrezGene,
# ortholog = TRUE
# )
#
# # load GO annotations from Ensembl
# myGENE2GO<-ViSEAGO::annotate(
# "Ensembl_id",
# Ensembl
# )
#
# # load GO annotations from Uniprot
# myGENE2GO<-ViSEAGO::annotate(
# "Uniprot_id",
# Uniprot
# )
#
# # load GO annotations from Custom
# myGENE2GO<-ViSEAGO::annotate(
# "Custom_id",
# Custom
# )
## ----Enrichment_data----------------------------------------------------------
# # create topGOdata for BP
# BP<-ViSEAGO::create_topGOdata(
# geneSel=selection,
# allGenes=background,
# gene2GO=myGENE2GO,
# ont="BP",
# nodeSize=5
# )
## ----Enrichment_data_tests----------------------------------------------------
# # perform TopGO test using clasic algorithm
# classic<-topGO::runTest(
# BP,
# algorithm ="classic",
# statistic = "fisher"
# )
## ----fgsea--------------------------------------------------------------------
# # perform fgseaMultilevel tests
# BP<-ViSEAGO::runfgsea(
# geneSel=table,
# ont="BP",
# gene2GO=myGENE2GO,
# method ="fgseaMultilevel",
# params = list(
# scoreType = "pos",
# minSize=5
# )
# )
## ----Enrichment_merge---------------------------------------------------------
# # merge results from topGO
# BP_sResults<-ViSEAGO::merge_enrich_terms(
# Input=list(
# condition=c("BP","classic")
# )
# )
#
# # merge results from fgsea
# BP_sResults<-ViSEAGO::merge_enrich_terms(
# Input=list(
# condition="BP"
# )
# )
## ----Enrichment_merge_display-------------------------------------------------
# # display the merged table
# ViSEAGO::show_table(BP_sResults)
#
# # print the merged table in a file
# ViSEAGO::show_table(
# BP_sResults,
# "BP_sResults.xls"
# )
## ----Enrichment_merge_count---------------------------------------------------
# # count significant (or not) pvalues by condition
# ViSEAGO::GOcount(BP_sResults)
## ----Enrichment_merge_interactions,fig.height=4-------------------------------
# # display interactions
# ViSEAGO::Upset(
# BP_sResults,
# file="OLexport.xls"
# )
## ----SS_build-----------------------------------------------------------------
# # initialyse
# myGOs<-ViSEAGO::build_GO_SS(
# gene2GO=myGENE2GO,
# enrich_GO_terms=BP_sResults
# )
#
# # compute all available Semantic Similarity (SS) measures
# myGOs<-ViSEAGO::compute_SS_distances(
# myGOs,
# distance="Wang"
# )
## ----SS_terms_mdsplot,eval=FALSE----------------------------------------------
# # display MDSplot
# ViSEAGO::MDSplot(myGOs)
#
# # print MDSplot
# ViSEAGO::MDSplot(
# myGOs,
# file="mdsplot1.png"
# )
## ----SS_Wang-wardD2-----------------------------------------------------------
# # GOterms heatmap with the default parameters
# Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=TRUE,
# showGOlabels=TRUE,
# GO.tree=list(
# tree=list(
# distance="Wang",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# pamStage=TRUE,
# pamRespectsDendro=TRUE,
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----SS_Wang-wardD2_clusters-heatmap------------------------------------------
# # Display the clusters-heatmap
# ViSEAGO::show_heatmap(
# Wang_clusters_wardD2,
# "GOterms"
# )
#
# # print the clusters-heatmap
# ViSEAGO::show_heatmap(
# Wang_clusters_wardD2,
# "GOterms",
# "cluster_heatmap_Wang_wardD2.png"
# )
## ----SS_Wang-ward.D2_clusters-heatmap_table-----------------------------------
# # Display the clusters-heatmap table
# ViSEAGO::show_table(Wang_clusters_wardD2)
#
# # Print the clusters-heatmap table
# ViSEAGO::show_table(
# Wang_clusters_wardD2,
# "cluster_heatmap_Wang_wardD2.xls"
# )
## ----SS_Wang-ward.D2_mdsplot,eval=FALSE---------------------------------------
# # display colored MDSplot
# ViSEAGO::MDSplot(
# Wang_clusters_wardD2,
# "GOterms"
# )
#
# # print colored MDSplot
# ViSEAGO::MDSplot(
# Wang_clusters_wardD2,
# "GOterms",
# file="mdsplot2.png"
# )
## ----SS_Wang-wardD2_groups----------------------------------------------------
# # calculate semantic similarites between clusters of GO terms
# Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances(
# Wang_clusters_wardD2,
# distance=c("max", "avg","rcmax", "BMA")
# )
## ----SS_Wang-ward.D2_groups_mdsplot-------------------------------------------
# # build and highlight in an interactive MDSplot grouped clusters for one distance object
# ViSEAGO::MDSplot(
# Wang_clusters_wardD2,
# "GOclusters"
# )
#
# # build and highlight in MDSplot grouped clusters for one distance object
# ViSEAGO::MDSplot(
# Wang_clusters_wardD2,
# "GOclusters",
# file="mdsplot3.png"
# )
## ----SS_Wang-wardD2_groups_heatmap--------------------------------------------
# # GOclusters heatmap
# Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap(
# Wang_clusters_wardD2,
# tree=list(
# distance="BMA",
# aggreg.method="ward.D2"
# )
# )
## ----SS_Wang-ward.D2_groups_heatmap_display-----------------------------------
# # sisplay the GOClusters heatmap
# ViSEAGO::show_heatmap(
# Wang_clusters_wardD2,
# "GOclusters"
# )
#
# # print the GOClusters heatmap in a file
# ViSEAGO::show_heatmap(
# Wang_clusters_wardD2,
# "GOclusters",
# "Wang_clusters_wardD2_heatmap_groups.png"
# )
## ----session,eval=TRUE,echo=FALSE---------------------------------------------
version
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.