Nothing
## ----setup,include=FALSE------------------------------------------------------
# load
library(ViSEAGO)
# knitr document options
knitr::opts_chunk$set(
eval=FALSE,fig.path='./data/output/',echo=TRUE,fig.pos = 'H',
fig.width=8,message=FALSE,comment=NA,warning=FALSE
)
## ----vignette_data_used-------------------------------------------------------
# # load vignette data
# data(
# myGOs,
# package="ViSEAGO"
# )
## ----SS_build,eval=FALSE------------------------------------------------------
# # compute Semantic Similarity (SS)
# myGOs<-ViSEAGO::compute_SS_distances(
# myGOs,
# distance=c("Resnik","Lin","Rel","Jiang","Wang")
# )
## ----SS_terms_Resnik-wardD2---------------------------------------------------
# # GO terms heatmap
# Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=TRUE,
# showGOlabels=TRUE,
# GO.tree=list(
# tree=list(
# distance="Resnik",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----SS_Lin-wardD2------------------------------------------------------------
# # GO terms heatmap
# Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=TRUE,
# showGOlabels=TRUE,
# GO.tree=list(
# tree=list(
# distance="Lin",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----SS_ Rel-wardD2-----------------------------------------------------------
# # GO terms heatmap
# Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=TRUE,
# showGOlabels=TRUE,
# GO.tree=list(
# tree=list(
# distance="Rel",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----SS_Jiang-wardD2----------------------------------------------------------
# # GO terms heatmap
# Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=TRUE,
# showGOlabels=TRUE,
# GO.tree=list(
# tree=list(
# distance="Jiang",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----SS_Wang-wardD2-----------------------------------------------------------
# # GO terms heatmap
# Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
# myGOs,
# showIC=TRUE,
# showGOlabels=TRUE,
# GO.tree=list(
# tree=list(
# distance="Wang",
# aggreg.method="ward.D2"
# ),
# cut=list(
# dynamic=list(
# deepSplit=2,
# minClusterSize =2
# )
# )
# ),
# samples.tree=NULL
# )
## ----parameters_dend_correlation----------------------------------------------
# # build the list of trees
# dend<- dendextend::dendlist(
# "Resnik"=slot(Resnik_clusters_wardD2,"dendrograms")$GO,
# "Lin"=slot(Lin_clusters_wardD2,"dendrograms")$GO,
# "Rel"=slot(Rel_clusters_wardD2,"dendrograms")$GO,
# "Jiang"=slot(Jiang_clusters_wardD2,"dendrograms")$GO,
# "Wang"=slot(Wang_clusters_wardD2,"dendrograms")$GO
# )
#
# # build the trees matrix correlation
# dend_cor<-dendextend::cor.dendlist(dend)
## ----parameters_dend_correlation_print----------------------------------------
# # corrplot
# corrplot::corrplot(
# dend_cor,
# "pie",
# "lower",
# is.corr=FALSEALSE,
# cl.lim=c(0,1)
# )
## ----parameters_dend_comparison,fig.cap="dendrograms comparison"--------------
# # dendrogram list
# dl<-dendextend::dendlist(
# slot(Resnik_clusters_wardD2,"dendrograms")$GO,
# slot(Wang_clusters_wardD2,"dendrograms")$GO
# )
#
# # untangle the trees (efficient but very highly time consuming)
# tangle<-dendextend::untangle(
# dl,
# "step2side"
# )
#
# # display the entanglement
# dendextend::entanglement(tangle) # 0.08362968
#
# # display the tanglegram
# dendextend::tanglegram(
# tangle,
# margin_inner=5,
# edge.lwd=1,
# lwd = 1,
# lab.cex=0.8,
# columns_width = c(5,2,5),
# common_subtrees_color_lines=FALSE
# )
## ----parameters_clusters_correlation------------------------------------------
# # clusters to compare
# clusters=list(
# Resnik="Resnik_clusters_wardD2",
# Lin="Lin_clusters_wardD2",
# Rel="Rel_clusters_wardD2",
# Jiang="Jiang_clusters_wardD2",
# Wang="Wang_clusters_wardD2"
# )
#
# # global dendrogram partition correlation
# clust_cor<-ViSEAGO::clusters_cor(
# clusters,
# method="adjusted.rand"
# )
## ----parameters_clusters_correlation_print------------------------------------
# # global dendrogram partition correlation
# corrplot::corrplot(
# clust_cor,
# "pie",
# "lower",
# is.corr=FALSEALSE,
# cl.lim=c(0,1)
# )
## ----parameters_clusters_comparison,fig.height=8------------------------------
# # clusters content comparisons
# ViSEAGO::compare_clusters(clusters)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.