Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(progress = FALSE)
## ----message=FALSE, warning=FALSE, include=FALSE------------------------------
library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)
## ----results = 'hide', message=FALSE, warning=FALSE, eval = F-----------------
# query <- GDCquery(project = "TCGA-GBM",
# data.category = "Gene expression",
# data.type = "Gene expression quantification",
# platform = "Illumina HiSeq",
# file.type = "normalized_results",
# experimental.strategy = "RNA-Seq",
# barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
# legacy = TRUE)
# GDCdownload(query, method = "api", files.per.chunk = 10)
# data <- GDCprepare(query)
## ----message=FALSE, warning=FALSE, include=FALSE------------------------------
data <- gbm.exp.legacy
## ----message=FALSE, warning=FALSE---------------------------------------------
# Gene expression aligned against hg19.
datatable(as.data.frame(colData(data)),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
# Only first 100 to make render faster
datatable(assay(data)[1:100,],
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = TRUE)
rowRanges(data)
## ----results = 'hide', message=FALSE, warning=FALSE, eval=FALSE---------------
# # Gene expression aligned against hg38
# query <- GDCquery(project = "TCGA-GBM",
# data.category = "Transcriptome Profiling",
# data.type = "Gene Expression Quantification",
# workflow.type = "HTSeq - FPKM-UQ",
# barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"))
# GDCdownload(query)
# data <- GDCprepare(query)
## ----message=FALSE, warning=FALSE, include=FALSE------------------------------
data <- gbm.exp.harmonized
## ----message=FALSE, warning=FALSE---------------------------------------------
datatable(as.data.frame(colData(data)),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
datatable(assay(data)[1:100,],
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = TRUE)
rowRanges(data)
## ----message=FALSE, warning=FALSE, eval =FALSE--------------------------------
# #-------------------------------------------------------
# # Example to idat files from TCGA projects
# #-------------------------------------------------------
# projects <- TCGAbiolinks:::getGDCprojects()$project_id
# projects <- projects[grepl('^TCGA',projects,perl=T)]
# match.file.cases.all <- NULL
# for(proj in projects){
# print(proj)
# query <- GDCquery(project = proj,
# data.category = "Raw microarray data",
# data.type = "Raw intensities",
# experimental.strategy = "Methylation array",
# legacy = TRUE,
# file.type = ".idat",
# platform = "Illumina Human Methylation 450")
# match.file.cases <- getResults(query,cols=c("cases","file_name"))
# match.file.cases$project <- proj
# match.file.cases.all <- rbind(match.file.cases.all,match.file.cases)
# tryCatch(GDCdownload(query, method = "api", files.per.chunk = 20),
# error = function(e) GDCdownload(query, method = "client"))
# }
# # This will create a map between idat file name, cases (barcode) and project
# readr::write_tsv(match.file.cases.all, path = "idat_filename_case.txt")
# # code to move all files to local folder
# for(file in dir(".",pattern = ".idat", recursive = T)){
# TCGAbiolinks::move(file,basename(file))
# }
## ---- eval = FALSE------------------------------------------------------------
# query_meth.hg19 <- GDCquery(project= "TCGA-LGG",
# data.category = "DNA methylation",
# platform = "Illumina Human Methylation 450",
# barcode = c("TCGA-HT-8111-01A-11D-2399-05","TCGA-HT-A5R5-01A-11D-A28N-05"),
# legacy = TRUE)
# GDCdownload(query_meth.hg19)
# data.hg19 <- GDCprepare(query_meth.hg19)
## ---- eval = FALSE------------------------------------------------------------
# query <- GDCquery(project = "TCGA-GBM",
# data.category = "Protein expression",
# legacy = TRUE,
# barcode = c("TCGA-OX-A56R-01A-21-A44T-20","TCGA-08-0357-01A-21-1898-20"))
# GDCdownload(query)
# data <- GDCprepare(query, save = TRUE,
# save.filename = "gbmProteinExpression.rda",
# remove.files.prepared = TRUE)
## ---- eval = FALSE------------------------------------------------------------
# # Aligned against Hg19
# query.exp.hg19 <- GDCquery(project = "TCGA-GBM",
# data.category = "Gene expression",
# data.type = "Gene expression quantification",
# platform = "Illumina HiSeq",
# file.type = "normalized_results",
# experimental.strategy = "RNA-Seq",
# barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
# legacy = TRUE)
# GDCdownload(query.exp.hg19)
# data <- GDCprepare(query.exp.hg19)
## ---- eval = FALSE------------------------------------------------------------
# query <- GDCquery(project = "TCGA-ACC",
# data.category = "Copy Number Variation",
# data.type = "Copy Number Segment",
# barcode = c( "TCGA-OR-A5KU-01A-11D-A29H-01", "TCGA-OR-A5JK-01A-11D-A29H-01"))
# GDCdownload(query)
# data <- GDCprepare(query)
## ---- eval = FALSE------------------------------------------------------------
# query <- GDCquery(project = "TCGA-ACC",
# data.category = "Copy Number Variation",
# data.type = "Gene Level Copy Number Scores",
# access="open")
# GDCdownload(query)
# data <- GDCprepare(query)
## ---- eval = FALSE------------------------------------------------------------
# # mRNA pipeline: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
# query.exp.hg38 <- GDCquery(project = "TCGA-GBM",
# data.category = "Transcriptome Profiling",
# data.type = "Gene Expression Quantification",
# workflow.type = "HTSeq - FPKM-UQ",
# barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"))
# GDCdownload(query.exp.hg38)
# expdat <- GDCprepare(query = query.exp.hg38,
# save = TRUE,
# save.filename = "exp.rda")
## ---- eval = FALSE------------------------------------------------------------
# library(TCGAbiolinks)
# query.mirna <- GDCquery(project = "TARGET-AML",
# experimental.strategy = "miRNA-Seq",
# data.category = "Transcriptome Profiling",
# barcode = c("TARGET-20-PATDNN","TARGET-20-PAPUNR"),
# data.type = "miRNA Expression Quantification")
# GDCdownload(query.mirna)
# mirna <- GDCprepare(query = query.mirna,
# save = TRUE,
# save.filename = "mirna.rda")
#
#
# query.isoform <- GDCquery(project = "TARGET-AML",
# experimental.strategy = "miRNA-Seq",
# data.category = "Transcriptome Profiling",
# barcode = c("TARGET-20-PATDNN","TARGET-20-PAPUNR"),
# data.type = "Isoform Expression Quantification")
# GDCdownload(query.isoform)
#
# isoform <- GDCprepare(query = query.isoform,
# save = TRUE,
# save.filename = "mirna-isoform.rda")
## ---- eval = FALSE------------------------------------------------------------
# #--------------------------------------
# # DNA methylation data
# #--------------------------------------
# # DNA methylation aligned to hg38
# query_met.hg38 <- GDCquery(project= "TCGA-LGG",
# data.category = "DNA Methylation",
# platform = "Illumina Human Methylation 450",
# barcode = c("TCGA-HT-8111-01A-11D-2399-05","TCGA-HT-A5R5-01A-11D-A28N-05"))
# GDCdownload(query_met.hg38)
# data.hg38 <- GDCprepare(query_met.hg38)
## ---- eval = FALSE------------------------------------------------------------
# # Using sesame http://bioconductor.org/packages/sesame/
# # Please cite 10.1093/nar/gky691 and doi: 10.1093/nar/gkt090.
# library(TCGAbiolinks)
# proj <- "TCGA-ACC"
# query <- GDCquery(project = proj,
# data.category = "Raw microarray data",
# data.type = "Raw intensities",
# experimental.strategy = "Methylation array",
# legacy = TRUE,
# barcode = c("TCGA-OR-A5JT","CGA-OR-A5LG","TCGA-OR-A5JX"),
# file.type = ".idat",
# platform = "Illumina Human Methylation 450")
# tryCatch(GDCdownload(query, method = "api", files.per.chunk = 20),
# error = function(e) GDCdownload(query, method = "client"))
# betas <- GDCprepare(query)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.