Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(dpi = 300)
knitr::opts_chunk$set(cache=FALSE)
## ----message = FALSE, warning = FALSE, include = FALSE------------------------
library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# library(SummarizedExperiment)
# library(TCGAbiolinks)
# query.exp <- GDCquery(project = "TCGA-BRCA",
# legacy = TRUE,
# data.category = "Gene expression",
# data.type = "Gene expression quantification",
# platform = "Illumina HiSeq",
# file.type = "results",
# experimental.strategy = "RNA-Seq",
# sample.type = c("Primary Tumor","Solid Tissue Normal"))
# GDCdownload(query.exp)
# brca.exp <- GDCprepare(query = query.exp, save = TRUE, save.filename = "brcaExp.rda")
#
# # get subtype information
# dataSubt <- TCGAquery_subtype(tumor = "BRCA")
#
# # get clinical data
# dataClin <- GDCquery_clinic(project = "TCGA-BRCA","clinical")
#
# # Which samples are Primary Tumor
# dataSmTP <- TCGAquery_SampleTypes(getResults(query.exp,cols="cases"),"TP")
# # which samples are solid tissue normal
# dataSmNT <- TCGAquery_SampleTypes(getResults(query.exp,cols="cases"),"NT")
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# dataPrep <- TCGAanalyze_Preprocessing(object = brca.exp, cor.cut = 0.6)
#
# dataNorm <- TCGAanalyze_Normalization(tabDF = dataPrep,
# geneInfo = geneInfo,
# method = "gcContent")
#
# dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm,
# method = "quantile",
# qnt.cut = 0.25)
#
# dataDEGs <- TCGAanalyze_DEA(mat1 = dataFilt[,dataSmNT],
# mat2 = dataFilt[,dataSmTP],
# Cond1type = "Normal",
# Cond2type = "Tumor",
# fdr.cut = 0.01 ,
# logFC.cut = 1,
# method = "glmLRT")
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",
# RegulonList = rownames(dataDEGs))
#
# TCGAvisualize_EAbarplot(tf = rownames(ansEA$ResBP),
# GOBPTab = ansEA$ResBP,
# GOCCTab = ansEA$ResCC,
# GOMFTab = ansEA$ResMF,
# PathTab = ansEA$ResPat,
# nRGTab = rownames(dataDEGs),
# nBar = 20)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("case1_EA.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
#
# group1 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
# group2 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))
#
# dataSurv <- TCGAanalyze_SurvivalKM(clinical_patient = dataClin,
# dataGE = dataFilt,
# Genelist = rownames(dataDEGs),
# Survresult = FALSE,
# ThreshTop = 0.67,
# ThreshDown = 0.33,
# p.cut = 0.05, group1, group2)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
#
# require(dnet) # to change
# org.Hs.string <- dRDataLoader(RData = "org.Hs.string")
#
# TabCoxNet <- TCGAvisualize_SurvivalCoxNET(dataClin,
# dataFilt,
# Genelist = rownames(dataSurv),
# scoreConfidence = 700,
# org.Hs.string = org.Hs.string,
# titlePlot = "Case Study n.1 dnet")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("case1_dnet.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# library(TCGAbiolinks)
# library(SummarizedExperiment)
#
# query.exp <- GDCquery(project = "TCGA-LGG",
# legacy = TRUE,
# data.category = "Gene expression",
# data.type = "Gene expression quantification",
# platform = "Illumina HiSeq",
# file.type = "results",
# experimental.strategy = "RNA-Seq",
# sample.type = "Primary Tumor")
# GDCdownload(query.exp)
# lgg.exp <- GDCprepare(query = query.exp, save = TRUE, save.filename = "lggExp.rda")
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# library(dplyr)
#
# dataPrep <- TCGAanalyze_Preprocessing(object = lgg.exp, cor.cut = 0.6)
# dataNorm <- TCGAanalyze_Normalization(tabDF = dataPrep,
# geneInfo = geneInfo,
# method = "gcContent")
#
# datFilt <- dataNorm %>% TCGAanalyze_Filtering(method = "varFilter") %>%
# TCGAanalyze_Filtering(method = "filter1") %>% TCGAanalyze_Filtering(method = "filter2",foldChange = 0.2)
#
# data_Hc2 <- TCGAanalyze_Clustering(tabDF = datFilt,
# method = "consensus",
# methodHC = "ward.D2")
# # Add cluster information to Summarized Experiment
# colData(lgg.exp)$groupsHC <- paste0("EC",data_Hc2[[4]]$consensusClass)
#
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# TCGAanalyze_survival(data = colData(lgg.exp),
# clusterCol = "groupsHC",
# main = "TCGA kaplan meier survival plot from consensus cluster",
# legend = "RNA Group",height = 10,
# risk.table = T,conf.int = F,
# color = c("black","red","blue","green3"),
# filename = "survival_lgg_expression_subtypes.png")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("case2_surv.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# TCGAvisualize_Heatmap(t(datFilt),
# col.metadata = colData(lgg.exp)[,c("barcode",
# "groupsHC",
# "subtype_Histology",
# "subtype_IDH.codel.subtype")],
# col.colors = list(
# groupsHC = c("EC1"="black",
# "EC2"="red",
# "EC3"="blue",
# "EC4"="green3")),
# sortCol = "groupsHC",
# type = "expression", # sets default color
# scale = "row", # use z-scores for better visualization. Center gene expression level around 0.
# title = "Heatmap from concensus cluster",
# filename = "case2_Heatmap.png",
# cluster_rows = TRUE,
# color.levels = colorRampPalette(c("green", "black", "red"))(n = 11),
# extrems =seq(-5,5,1),
# cluster_columns = FALSE,
# width = 1000,
# height = 1000)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(jpeg)
library(grid)
img <- readJPEG("case2_Heatmap.jpg")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# LGGmut <- GDCquery_Maf(tumor = "LGG", pipelines = "muse")
# # Selecting gene
# mRNAsel <- "ATRX"
# LGGselected <- LGGmut[LGGmut$Hugo_Symbol == mRNAsel,]
#
# dataMut <- LGGselected[!duplicated(LGGselected$Tumor_Sample_Barcode),]
# dataMut$Tumor_Sample_Barcode <- substr(dataMut$Tumor_Sample_Barcode,1,12)
#
# # Adding the Expression Cluster classification found before
# dataMut <- merge(dataMut, cluster, by.y="patient", by.x="Tumor_Sample_Barcode")
# dataMut <- dataMut[dataMut$Variant_Classification!=0,]
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# library(TCGAbiolinks)
# library(SummarizedExperiment)
# dir.create("case3")
# setwd("case3")
# #-----------------------------------
# # STEP 1: Search, download, prepare |
# #-----------------------------------
# # 1.1 - DNA methylation
# # ----------------------------------
# query.met <- GDCquery(project = "TCGA-ACC",
# legacy = TRUE,
# data.category = "DNA methylation",
# platform = "Illumina Human Methylation 450")
# GDCdownload(query.met)
#
# acc.met <- GDCprepare(query = query.met,
# save = TRUE,
# save.filename = "accDNAmet.rda",
# summarizedExperiment = TRUE)
#
# #-----------------------------------
# # 1.2 - RNA expression
# # ----------------------------------
# query.exp <- GDCquery(project = "TCGA-ACC",
# legacy = TRUE,
# data.category = "Gene expression",
# data.type = "Gene expression quantification",
# platform = "Illumina HiSeq",
# file.type = "results")
# GDCdownload(query.exp)
# acc.exp <- GDCprepare(query = query.exp, save = TRUE, save.filename = "accExp.rda")
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# # na.omit
# acc.met <- subset(acc.met,subset = (rowSums(is.na(assay(acc.met))) == 0))
#
# # Volcano plot
# acc.met <- TCGAanalyze_DMC(acc.met, groupCol = "subtype_MethyLevel",
# group1 = "CIMP-high",
# group2="CIMP-low",
# p.cut = 10^-5,
# diffmean.cut = 0.25,
# legend = "State",
# plot.filename = "CIMP-highvsCIMP-low_metvolcano.png")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("CIMP-highvsCIMP-low_metvolcano.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# #-------------------------------------------------
# # 2.3 - DEA - Expression analysis - volcano plot
# # ------------------------------------------------
# acc.exp.aux <- subset(acc.exp,
# select = colData(acc.exp)$subtype_MethyLevel %in% c("CIMP-high","CIMP-low"))
#
# idx <- colData(acc.exp.aux)$subtype_MethyLevel %in% c("CIMP-high")
# idx2 <- colData(acc.exp.aux)$subtype_MethyLevel %in% c("CIMP-low")
#
# dataPrep <- TCGAanalyze_Preprocessing(object = acc.exp.aux, cor.cut = 0.6)
#
# dataNorm <- TCGAanalyze_Normalization(tabDF = dataPrep,
# geneInfo = geneInfo,
# method = "gcContent")
#
# dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm,
# qnt.cut = 0.25,
# method='quantile')
#
# dataDEGs <- TCGAanalyze_DEA(mat1 = dataFilt[,idx],
# mat2 = dataFilt[,idx2],
# Cond1type = "CIMP-high",
# Cond2type = "CIMP-low",
# method = "glmLRT")
#
# TCGAVisualize_volcano(x = dataDEGs$logFC,
# y = dataDEGs$FDR,
# filename = "Case3_volcanoexp.png",
# x.cut = 3,
# y.cut = 10^-5,
# names = rownames(dataDEGs),
# color = c("black","red","darkgreen"),
# names.size = 2,
# xlab = " Gene expression fold change (Log2)",
# legend = "State",
# title = "Volcano plot (CIMP-high vs CIMP-low)",
# width = 10)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("figure5exp.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
#
# #------------------------------------------
# # 2.4 - Starburst plot
# # -----------------------------------------
# # If true the argument names of the geenes in circle
# # (biologically significant genes, has a change in gene
# # expression and DNA methylation and respects all the thresholds)
# # will be shown
# # these genes are returned by the function see starburst object after the function is executed
# starburst <- TCGAvisualize_starburst(met = acc.met,
# exp = dataDEGs,
# genome = "hg19"
# group1 = "CIMP-high",
# group2 = "CIMP-low",
# filename = "starburst.png",
# met.platform = "450K",
# met.p.cut = 10^-5,
# exp.p.cut = 10^-5,
# diffmean.cut = 0.25,
# logFC.cut = 3,
# names = FALSE,
# height=10,
# width=15,
# dpi=300)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("figure5star.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# library(TCGAbiolinks)
# library(SummarizedExperiment)
# library(ELMER)
# library(parallel)
# dir.create("case4")
# setwd("case4")
# #-----------------------------------
# # STEP 1: Search, download, prepare |
# #-----------------------------------
# # 1.1 - DNA methylation
# # ----------------------------------
# query.met <- GDCquery(project = "TCGA-KIRC",
# data.category = "DNA Methylation",
# platform = "Illumina Human Methylation 450")
# GDCdownload(query.met)
# kirc.met <- GDCprepare(query = query.met,
# save = TRUE,
# save.filename = "kircDNAmet.rda",
# summarizedExperiment = TRUE)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# # Step 1.2 download expression data
# #-----------------------------------
# # 1.2 - RNA expression
# # ----------------------------------
# query.exp <- GDCquery(project = "TCGA-KIRC",
# data.category = "Transcriptome Profiling",
# data.type = "Gene Expression Quantification",
# workflow.type = "HTSeq - FPKM-UQ")
# GDCdownload(query.exp)
# kirc.exp <- GDCprepare(query = query.exp,
# save = TRUE,
# save.filename = "kircExp.rda")
# kirc.exp <- kirc.exp
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# distal.probes <- get.feature.probe(genome = "hg38", met.platform = "450K")
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# library(MultiAssayExperiment)
# mae <- createMAE(exp = kirc.exp,
# met = kirc.met,
# save = TRUE,
# linearize.exp = TRUE,
# filter.probes = distal.probes,
# save.filename = "mae_kirc.rda",
# met.platform = "450K",
# genome = "hg38",
# TCGA = TRUE)
# # Remove FFPE samples
# mae <- mae[,!mae$is_ffpe]
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# group.col <- "definition"
# group1 <- "Primary Tumor"
# group2 <- "Solid Tissue Normal"
# direction <- "hypo"
# dir.out <- file.path("kirc",direction)
# dir.create(dir.out, recursive = TRUE)
# #--------------------------------------
# # STEP 3: Analysis |
# #--------------------------------------
# # Step 3.1: Get diff methylated probes |
# #--------------------------------------
# sig.diff <- get.diff.meth(data = mae,
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# minSubgroupFrac = 0.2,
# sig.dif = 0.3,
# diff.dir = direction, # Search for hypomethylated probes in group 1
# cores = 1,
# dir.out = dir.out,
# pvalue = 0.01)
#
# #-------------------------------------------------------------
# # Step 3.2: Identify significant probe-gene pairs |
# #-------------------------------------------------------------
# # Collect nearby 20 genes for Sig.probes
# nearGenes <- GetNearGenes(data = mae,
# probes = sig.diff$probe,
# numFlankingGenes = 20, # 10 upstream and 10 dowstream genes
# cores = 1)
#
# pair <- get.pair(data = mae,
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# nearGenes = nearGenes,
# minSubgroupFrac = 0.4, # % of samples to use in to create groups U/M
# permu.dir = file.path(dir.out,"permu"),
# permu.size = 100, # Please set to 100000 to get significant results
# raw.pvalue = 0.05,
# Pe = 0.01, # Please set to 0.001 to get significant results
# filter.probes = TRUE, # See preAssociationProbeFiltering function
# filter.percentage = 0.05,
# filter.portion = 0.3,
# dir.out = dir.out,
# cores = 1,
# label = direction)
#
# # Identify enriched motif for significantly hypomethylated probes which
# # have putative target genes.
# enriched.motif <- get.enriched.motif(data = mae,
# probes = pair$Probe,
# dir.out = dir.out,
# label = direction,
# min.incidence = 10,
# lower.OR = 1.1)
# TF <- get.TFs(data = mae,
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# minSubgroupFrac = 0.4,
# enriched.motif = enriched.motif,
# dir.out = dir.out,
# cores = 1,
# label = direction)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# scatter.plot(data = mae,
# byProbe = list(probe = sig.diff$probe[1], numFlankingGenes = 20),
# category = "definition",
# dir.out = "plots",
# lm = TRUE, # Draw linear regression curve
# save = TRUE)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("case4_elmer.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# scatter.plot(data = mae,
# byTF = list(TF = c("RUNX1","RUNX2","RUNX3"),
# probe = enriched.motif[[names(enriched.motif)[10]]]),
# category = "definition",
# dir.out = "plots",
# save = TRUE,
# lm_line = TRUE)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("elmer1.png")
grid.raster(img)
## ----eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE-------------------------
# heatmapPairs(data = mae,
# group.col = "definition",
# group1 = "Primary Tumor",
# annotation.col = c("gender"),
# group2 = "Solid Tissue Normal",
# pairs = pair,
# filename = "heatmap.pdf")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(jpeg)
library(grid)
img <- readJPEG("elmer2.jpg")
grid.raster(img)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("elmer3.png")
grid.raster(img)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.