R/TCC.public.R

Defines functions getNormalizedData filterLowCountGenes getResult estimateDE

Documented in estimateDE filterLowCountGenes getNormalizedData getResult

setMethod(
    f = "calcNormFactors",
    signature(tcc = "TCC"),
    definition = function(tcc, norm.method = NULL, test.method = NULL, 
                          iteration = TRUE, FDR = NULL, floorPDEG = NULL,
                          increment = FALSE, ...) {
        obj <- tcc$copy()
        obj$calcNormFactors(norm.method = norm.method, 
                            test.method = test.method, 
                            iteration = iteration, FDR = FDR, 
                            floorPDEG = floorPDEG, increment = increment,
                            ...)
        return(obj)
    }
)

estimateDE <- function(tcc, test.method = NULL, FDR = NULL, paired = NULL,
                       full = NULL, reduced = NULL,
                       design = NULL,  contrast = NULL,
                       coef = NULL, 
                       group = NULL, cl = NULL,
                       samplesize = NULL,
                       logged = NULL, floor = NULL, ...) {
    obj <- tcc$copy()
    obj$estimateDE(test.method = test.method, FDR = FDR, paired = paired,
                   full = full, reduced = reduced, 
                   design = design, contrast = contrast, coef = coef,
                   group = group, samplesize = samplesize,
                   logged = logged, floor = floor, cl = cl, ...)
    return(obj)
}

getResult <- function(tcc, sort = FALSE, ...) {
    if (length(tcc$stat) == 0)
        stop("\nTCC::ERROR: There are no statistics in stat fields of TCC class tcc. Execute TCC.estiamteDE for calculating them.\n")
    ## calculate M-A coordinates
    gru <- unique(tcc$group[, 1])
    m.value <- rep(NA, length = nrow(tcc$count))
    a.value <- rep(NA, length = nrow(tcc$count))
    if ((length(gru) == 2) && (ncol(tcc$group) == 1)) {
        #ma <- tcc$plotMA(showfig = FALSE, ...)
        ma <- plot(tcc, showfig = FALSE, ...)
        m.value <- ma$m.value
        a.value <- ma$a.value
    } else if (tcc$private$paired) {
        ma <- plot(tcc, showfig = FALSE, ...)
        m.value <- ma$m.value
        a.value <- ma$a.value
    }
    ## merge statistics to data frame
    if (!is.null(tcc$stat$p.value)) {
        ## show p-values if existed
        df <- data.frame(
            gene_id = rownames(tcc$count),
            a.value = a.value,
            m.value = m.value,
            p.value = tcc$stat$p.value,
            q.value = tcc$stat$q.value,
            rank    = tcc$stat$rank,
            estimatedDEG = tcc$estimatedDEG
        ) 
    } else if (!is.null(tcc$stat$testStat)) {
        ## show probability if existed
        df <- data.frame(
            gene_id  = rownames(tcc$count),
            a.value  = a.value,
            m.value  = m.value,
            testStat = tcc$stat$testStat,
            rank     = tcc$stat$rank,
            estimatedDEG = tcc$estimatedDEG
        ) 
    } else if (!is.null(tcc$stat$prob)) {
        ## show probability if existed
        df <- data.frame(
            gene_id = rownames(tcc$count),
            a.value = a.value,
            m.value = m.value,
            prob    = tcc$stat$prob,
            rank    = tcc$stat$rank,
            estimatedDEG = tcc$estimatedDEG
        ) 
    }
    if (sort)
        df <- df[order(df$rank), ]
    rownames(df) <- NULL
    return (df)
}

filterLowCountGenes <- function(tcc, low.count = 0) {
    obj <- tcc$copy()
    
    gene.keep = (rowSums(obj$count) > low.count)
    
    obj$count <- obj$count[gene.keep, ]
    if (!is.null(obj$simulation$trueDEG) && length(obj$simulation$trueDEG) != 0)
        obj$simulation$trueDEG <- obj$simulation$trueDEG[gene.keep]
    if (!is.null(obj$estimatedDEG) && length(obj$estimatedDEG) != 0)
        obj$estimatedDEG <- obj$estimatedDEG[gene.keep]
    if (!is.null(obj$stat) && length(obj$stat) != 0) {
        for (i in 1:length(obj$stat)) {
            if (length(obj$stat[[i]]) == length(gene.keep))
                obj$stat[[i]] <- obj$stat[[i]][gene.keep]
        }
    }
    
    return (obj)
}

getNormalizedData <- function(tcc) {
    return (tcc$getNormalizedData())
}

Try the TCC package in your browser

Any scripts or data that you put into this service are public.

TCC documentation built on Nov. 8, 2020, 8:20 p.m.