Nothing
setMethod(
f = "calcNormFactors",
signature(tcc = "TCC"),
definition = function(tcc, norm.method = NULL, test.method = NULL,
iteration = TRUE, FDR = NULL, floorPDEG = NULL,
increment = FALSE, ...) {
obj <- tcc$copy()
obj$calcNormFactors(norm.method = norm.method,
test.method = test.method,
iteration = iteration, FDR = FDR,
floorPDEG = floorPDEG, increment = increment,
...)
return(obj)
}
)
estimateDE <- function(tcc, test.method = NULL, FDR = NULL, paired = NULL,
full = NULL, reduced = NULL,
design = NULL, contrast = NULL,
coef = NULL,
group = NULL, cl = NULL,
samplesize = NULL,
logged = NULL, floor = NULL, ...) {
obj <- tcc$copy()
obj$estimateDE(test.method = test.method, FDR = FDR, paired = paired,
full = full, reduced = reduced,
design = design, contrast = contrast, coef = coef,
group = group, samplesize = samplesize,
logged = logged, floor = floor, cl = cl, ...)
return(obj)
}
getResult <- function(tcc, sort = FALSE, ...) {
if (length(tcc$stat) == 0)
stop("\nTCC::ERROR: There are no statistics in stat fields of TCC class tcc. Execute TCC.estiamteDE for calculating them.\n")
## calculate M-A coordinates
gru <- unique(tcc$group[, 1])
m.value <- rep(NA, length = nrow(tcc$count))
a.value <- rep(NA, length = nrow(tcc$count))
if ((length(gru) == 2) && (ncol(tcc$group) == 1)) {
#ma <- tcc$plotMA(showfig = FALSE, ...)
ma <- plot(tcc, showfig = FALSE, ...)
m.value <- ma$m.value
a.value <- ma$a.value
} else if (tcc$private$paired) {
ma <- plot(tcc, showfig = FALSE, ...)
m.value <- ma$m.value
a.value <- ma$a.value
}
## merge statistics to data frame
if (!is.null(tcc$stat$p.value)) {
## show p-values if existed
df <- data.frame(
gene_id = rownames(tcc$count),
a.value = a.value,
m.value = m.value,
p.value = tcc$stat$p.value,
q.value = tcc$stat$q.value,
rank = tcc$stat$rank,
estimatedDEG = tcc$estimatedDEG
)
} else if (!is.null(tcc$stat$testStat)) {
## show probability if existed
df <- data.frame(
gene_id = rownames(tcc$count),
a.value = a.value,
m.value = m.value,
testStat = tcc$stat$testStat,
rank = tcc$stat$rank,
estimatedDEG = tcc$estimatedDEG
)
} else if (!is.null(tcc$stat$prob)) {
## show probability if existed
df <- data.frame(
gene_id = rownames(tcc$count),
a.value = a.value,
m.value = m.value,
prob = tcc$stat$prob,
rank = tcc$stat$rank,
estimatedDEG = tcc$estimatedDEG
)
}
if (sort)
df <- df[order(df$rank), ]
rownames(df) <- NULL
return (df)
}
filterLowCountGenes <- function(tcc, low.count = 0) {
obj <- tcc$copy()
gene.keep = (rowSums(obj$count) > low.count)
obj$count <- obj$count[gene.keep, ]
if (!is.null(obj$simulation$trueDEG) && length(obj$simulation$trueDEG) != 0)
obj$simulation$trueDEG <- obj$simulation$trueDEG[gene.keep]
if (!is.null(obj$estimatedDEG) && length(obj$estimatedDEG) != 0)
obj$estimatedDEG <- obj$estimatedDEG[gene.keep]
if (!is.null(obj$stat) && length(obj$stat) != 0) {
for (i in 1:length(obj$stat)) {
if (length(obj$stat[[i]]) == length(gene.keep))
obj$stat[[i]] <- obj$stat[[i]][gene.keep]
}
}
return (obj)
}
getNormalizedData <- function(tcc) {
return (tcc$getNormalizedData())
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.