Nothing
# SpatialDecon: mixed cell deconvolution for spatial and/or bulk gene expression
# data
# Copyright (C) 2020, NanoString Technologies, Inc.
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
# You should have received a copy of the GNU General Public License along
# with this program. If not, see https://www.gnu.org/licenses/.
# Contact us:
# NanoString Technologies, Inc.
# 530 Fairview Avenue N
# Seattle, WA 98109
# Tel: (888) 358-6266
# pdanaher@nanostring.com
#' SpatialDecon: A package for computating the notorious bar statistic.
#'
#' The SpatialDecon package estimates mixed cell type abundance in the regions
#' of spatially-resolved gene
#' expression studies, using the method of Danaher & Kim (2020), "Advances in
#' mixed cell deconvolution enable
#' quantification of cell types in spatially-resolved gene expression data."
#' It is also appropriate to apply to bulk gene expression data.
#'
#' @section functions:
#' Functions to help set up deconvolution:
#' \itemize{
#' \item derive_GeoMx_background Estimates the background levels from GeoMx
#' experiments
#' \item collapseCellTypes reformats deconvolution results to merge
#' closely-related cell types
#' \item download_profile_matrix Downloads a cell profile matrix.
#' \item safeTME: a data object, a matrix of immune cell profiles for use in
#' tumor-immune deconvolution.
#' }
#' Deconvolution functions:
#' \itemize{
#' \item spatialdecon runs the core deconvolution function
#' \item reverseDecon runs a transposed/reverse deconvolution problem, fitting
#' the data as a function of cell abundance estimates.
#' Used to measure genes' dependency on cell mixing and to calculate gene
#' residuals from cell mixing.
#' }
#' Plotting functions:
#' \itemize{
#' \item florets Plot cell abundance on a specified x-y space, with each point
#' a cockscomb plot showing the cell abundances of that region/sample.
#' \item TIL_barplot Plot abundances of tumor infiltrating lymphocytes (TILs)
#' estimated from the safeTME cell profile matrix
#' }
#' @examples
#' data(mini_geomx_dataset)
#' data(safeTME)
#' data(safeTME.matches)
#' # estimate background:
#' mini_geomx_dataset$bg <- derive_GeoMx_background(
#' norm = mini_geomx_dataset$normalized,
#' probepool = rep(1, nrow(mini_geomx_dataset$normalized)),
#' negnames = "NegProbe"
#' )
#' # run basic decon:
#' res0 <- spatialdecon(
#' norm = mini_geomx_dataset$normalized,
#' bg = mini_geomx_dataset$bg,
#' X = safeTME
#' )
#' # run decon with bells and whistles:
#' res <- spatialdecon(
#' norm = mini_geomx_dataset$normalized,
#' bg = mini_geomx_dataset$bg,
#' X = safeTME,
#' cellmerges = safeTME.matches,
#' cell_counts = mini_geomx_dataset$annot$nuclei,
#' is_pure_tumor = mini_geomx_dataset$annot$AOI.name == "Tumor"
#' )
#' @docType package
#' @name SpatialDecon-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.