Contents

\setcounter{tocdepth}{5} \tableofcontents

Introduction to SPsimSeq

SPsimSeq is a semi-parametric simulation procedure for simulating bulk and single-cell RNA-seq data. It is designed to maximally retain the characteristics of real RNA-seq data with reasonable flexibility to simulate a wide range of scenarios. In a first step, the logarithmic counts per millions of reads (log-CPM) values from a given real dataset are used for semi-parametrically estimating gene-wise distributions and the between-genes correlation structure. In particular, the estimation of the probability distributions uses the fast log-linear model-based density estimation approach developed by @efron1996using and @lindsey1974construction. The method makes use of the Gaussian-copulas [@Cario97modelingand] to retain the between-genes correlation structure, as implemented by @SHawinkel2019 for microbiome data simulation. Arbitrarily large datasets, with realistically varying library sizes, can be sampled from these distributions while maintaining the correlation structure between the genes. Our method has an additional step to explicitly account for the high abundance of zero counts, typical for single-cell RNA-seq data. This step models the probability of zero counts as a function of the mean expression of the gene and the library size (read depth) of the cell (both in log scale). Zero counts are then added to the simulated data such that the observed relationship (zero probability to mean expression and library size) is maintained. In addition, our method simulates DE by separately estimating the distributions of the gene expression from the different populations (for example treatment groups) in the source data, and subsequently sampling a new dataset from each group. The details of the SPsimSeq procedures, implementations and benchmarking results can be found in the supplementary file.

In this documentation, we will demonstrate SPsimSeq for simulating bulk and single-cell RNA-seq, data subsequently compare the characteristics of the simulated data with the real source data.

Installing SPsimSeq

The package can be installed and loaded using the following commands:

## Install SPsimSeq
library(devtools)
install_github("CenterForStatistics-UGent/SPsimSeq")

or from BioConductor

## Install SPsimSeq
library(BiocManager)
BiocManager::install("SPsimSeq")
# load package
library(SPsimSeq) 

Demonstration

Example 1: simulating bulk RNA-seq

Zhang RNA-seq data [@Zhang241190]: The data contains 498 neuroblastoma tumors. In short, unstranded poly(A)+ RNA sequencing was performed on the HiSeq 2000 instrument (Illumina). Paired-end reads with a length of 100 nucleotides were obtained. To quantify the full transcriptome, raw fastq files were processed with Kallisto v0.42.4 (index build with GRCh38-Ensembl v85). The pseudo-alignment tool Kallisto [@bray2016near] was chosen above other quantification methods as it is performing equally good but faster. For this study, a subset of 172 tumors (samples) with high-risk disease were selected, forming two groups: the MYCN amplified ($n_1$ = 91) and MYCN non-amplified ($n_2$ = 81) tumours as used in [@Assefa2018]. Sometimes we refer this dataset to us the Zhang data or the Zhang neuroblastoma data. A subset of this dataset (5000 randomly selected genes) is available with the SPsimSeq package for illustration purpose only.

 # load the Zhang bulk RNA-seq data (availabl with the package) 
 data("zhang.data.sub") 
  # filter genes with sufficient expression (important step to avoid bugs) 
 zhang.counts <- zhang.data.sub$counts 
 MYCN.status  <- zhang.data.sub$MYCN.status #The grouping variable

This dataset is now used as a template for semiparametric data generation. We simulate only a single data (n.sim = 1) with the following properties: - 3000 genes ( n.genes = 3000) - 172 samples (tot.samples = 172) -- equal to the source data - the samples are equally divided into 2 groups each with 90 samples (group.config = c(0.5, 0.5)) -- almost equal to the source data - all samples are from a single batch (batch.config = 1) - we add 10% DE genes (pDE = 0.1) - the DE genes have a log-fold-change of at least 0.5 in the source data (lfc.thrld = 0.5) - we do not model the zeroes separately, they are the part of density estimation (model.zero.prob = FALSE)

 set.seed(6452) #Set seed for reproducibility
 # simulate data
 sim.data.bulk <- SPsimSeq(n.sim = 1, s.data = zhang.counts,
                          group = MYCN.status, n.genes = 3000, batch.config = 1,
                          group.config = c(0.5, 0.5), tot.samples = ncol(zhang.counts), 
                          pDE = 0.1, lfc.thrld = 0.5, result.format = "list", return.details = TRUE)

Next, we explore the data we just generated.

 sim.data.bulk1 <- sim.data.bulk$sim.data.list[[1]]
 head(sim.data.bulk1$counts[, seq_len(5)])  # count data
 head(sim.data.bulk1$colData)        # sample info
 head(sim.data.bulk1$rowData)        # gene info

Since we set return.details = TRUE, we have access to all density estimates, which can be extracted with the evaluateDensities function.

geneDens = evaluateDensities(sim.data.bulk, newData = rownames(zhang.counts)[1])
#This returns for every sample, the midpoints (mids) and associated densities (gy)

Next we compare the data generated with SPsimSeq with the original data properties to show that they are realistic and close to the real data.

# compare the distributions of the mean expressions, variability, 
# and fraction of zero counts per gene
library(LSD) # for generating heatmap plots
# normalize counts for comparison  
Y0.log.cpm <- log2(edgeR::cpm(zhang.counts)+1)
Y1.log.cpm <- log2(edgeR::cpm(sim.data.bulk1$counts)+1)
Y0.log.cpm <- Y0.log.cpm[rowMeans(Y0.log.cpm>0)>=0.1, ]
Y1.log.cpm <- Y1.log.cpm[rowMeans(Y1.log.cpm>0)>=0.1, ]
rowVars <- function(X){apply(X, 1, var, na.rm=TRUE)}
rowCVs <- function(X){apply(X, 1, function(x) sd(x, na.rm=TRUE)/mean(x, na.rm=TRUE))}
par(mfrow=c(1, 3))
boxplot(list(real.data=log(colSums(zhang.counts)), 
             simulated.data=log(sim.data.bulk1$colData$sim.Lib.Size)), 
        main="library size") 
boxplot(list(real.data=rowMeans(Y0.log.cpm), 
             simulated.data=rowMeans(Y1.log.cpm)), 
        main="mean expression of genes") 
boxplot(list(real.data=rowVars(Y0.log.cpm), 
             simulated.data=rowVars(Y1.log.cpm)), 
        main="variance of gene expressions") 

The library sizes are identical since they were not modelled (see variable.lib.size argument in ?SPsimSeq). Next, we look at mean-variance trends

# compare the relationship between the mean and variability
par(mfrow=c(1,3), mar=c(4,4,4,1))
heatscatter(rowMeans(Y0.log.cpm), rowCVs(Y0.log.cpm), ylim=c(0, 6), xlim=c(0, 16),
            colpal="bl2gr2rd", main="real data", xlab="mean log2-CPM", 
            ylab="coefficients of variation", cexplot=0.5, alpha = 60, cex.lab=1.25)
heatscatter(rowMeans(Y1.log.cpm), rowCVs(Y1.log.cpm), ylim=c(0, 6), xlim=c(0, 16),
     main="SPsimSeq", xlab="mean log2-CPM", ylab="coefficients of variation", 
     cexplot=0.5, alpha = 60, colpal="bl2gr2rd", cex.lab=1.25)

n.gride <- 1000
min.g   <- seq(0, 20, length.out = n.gride+1)[-n.gride]
max.g   <- seq(0, 20, length.out = n.gride+1)[-1] 
mid.g   <- (min.g+max.g)/2
f.real  <- vapply(seq_len(n.gride), FUN.VALUE = double(1), function(r){
  x <- Y0.log.cpm[rowMeans(Y0.log.cpm)<=max.g[r] & rowMeans(Y0.log.cpm)>min.g[r],]
  y <- ifelse(!is.null(dim(x)), mean(rowCVs(x)), mean(sd(x)/mean(x))) 
  y
})
f.SPsim <- vapply(seq_len(n.gride), FUN.VALUE = double(1), function(r){
  x <- Y1.log.cpm[rowMeans(Y1.log.cpm)<=max.g[r] & rowMeans(Y1.log.cpm)>min.g[r],]
  y <- ifelse(!is.null(dim(x)), mean(rowCVs(x)), mean(sd(x)/mean(x))) 
  y
})

sm1 <- loess(I(f.SPsim-f.real)~mid.g) 
plot(mid.g, f.SPsim-f.real, xlim=c(0, 14), col="lightskyblue", pch=20, cex.lab=1.25,
     cex.main=1.4, main="SPsimSeq - real data", ylab="difference", xlab="mean log2-CPM")
lines(mid.g,predict(sm1, newdata = mid.g), col="blue", lwd=3) 

We emulated the correlation networks found in the real data (see genewiseCor argument). Now we check if the correlation patterns in the synthetic data resemble those in the real data.

# compare the correlation between genes and samples 
cor.mat.Y0 <- cor(t(Y0.log.cpm))
cor.mat.Y1 <- cor(t(Y1.log.cpm)) 
cor.vec.Y0 <- cor.mat.Y0[upper.tri(cor.mat.Y0)]
cor.vec.Y1 <- cor.mat.Y1[upper.tri(cor.mat.Y1)] 
par(mfrow=c(1,3), mar=c(4,4,3.5,1))
hist(cor.vec.Y0, nclass = 30, probability = TRUE, 
     border="gray", col="steelblue1", main="real data", xlab="Genewise correlations", 
     ylim=c(0, 3.5), xlim=c(-1, 1), cex.lab=1.25)
hist(cor.vec.Y1, nclass = 30, probability = TRUE, border="gray",
     col="steelblue1",  main="SPsimSeq", xlab="Genewise correlations",
     ylim=c(0, 3.5), xlim=c(-1, 1), cex.lab=1.25)
plot(seq(-1, 1, 0.1), seq(-1, 1, 0.1), type="n", xlab="quantile (real data)", 
     ylab="quantile (simulated data)",  main="correlation quantile-quantile plot")
abline(0, 1, col="gray")
points(quantile(cor.vec.Y0, seq(0, 1, 0.001)), quantile(cor.vec.Y1, seq(0, 1, 0.001)), 
       col="blue", pch=20, cex=1.5, cex.lab=1.25)  

Example 2: simulating single-cell RNA-seq (containing read-counts)

Neuroblastoma NGP cells scRNA-seq data (NGP data) retrieved from [@Verboom430090] (GEO accession GSE119984): This dataset is generated for a cellular perturbation experiment on the C1 instrument (SMARTer protocol) [@Verboom430090]. This total RNA-seq dataset contains 83 NGP neuroblastoma cells, of which 31 were treated with 8$\mu$M of nutlin-3 and the other 52 cells were treated with vehicle (controls). In the subsequent sections, this dataset is referred to us the NGP single-cell RNA-seq data.

We simulate only a single scRNA-seq data (n.sim = 1) with the following property - 4000 genes (n.genes = 4000) - 100 cells (tot.samples = 100) - the cells are equally divided into 2 groups each with 50 cells (group.config = c(0.5, 0.5)) - all cells are from a single batch (batch.config = 1) - we add 10% DE genes (pDE = 0.1) - the DE genes have a log-fold-change of at least 0.5 - we model the zeroes separately (model.zero.prob = TRUE) - the ouput will be in SingleCellExperiment class object (result.format = "SCE")

library(SingleCellExperiment)
# load the NGP nutlin data (availabl with the package, processed with SMARTer/C1 protocol, and contains read-counts)
  data("scNGP.data")
  set.seed(654321)
 # simulate data (we simulate here only a single data, n.sim = 1)
 sim.data.sc <- SPsimSeq(n.sim = 1, s.data = scNGP.data,
                         group = scNGP.data$characteristics..treatment, 
                         n.genes = 4000, batch.config = 1,
                         group.config = c(0.5, 0.5), tot.samples = 100, 
                         pDE = 0.1, lfc.thrld = 0.5, model.zero.prob = TRUE,
                         result.format = "SCE")

Take a quick peek at the data.

 sim.data.sc1 <- sim.data.sc[[1]]
 class(sim.data.sc1)
 head(counts(sim.data.sc1)[, seq_len(5)])
 colData(sim.data.sc1)
 rowData(sim.data.sc1)

Look at basic data properties.

# normalize counts for comparison  
Y0.log.cpm  <- log2(edgeR::cpm(counts(scNGP.data))+1)
Y1.log.cpm  <- log2(edgeR::cpm(counts(sim.data.sc1))+1)
Y0.log.cpm  <- Y0.log.cpm[rowMeans(Y0.log.cpm>0)>=0.1, ]
Y1.log.cpm  <- Y1.log.cpm[rowMeans(Y1.log.cpm>0)>=0.1, ]
rowVars <- function(X){apply(X, 1, var, na.rm=TRUE)}
rowCVs <- function(X){apply(X, 1, function(x) sd(x, na.rm=TRUE)/mean(x, na.rm=TRUE))}
rowZeroFrac <- function(X){apply(X, 1, function(x) mean(x==0, na.rm=TRUE))}
par(mfrow=c(1, 3))
boxplot(list(real.data=colSums(counts(scNGP.data)), 
             simulated.data=colData(sim.data.sc1)$sim.Lib.Size), 
        main="library size") 
boxplot(list(real.data=rowMeans(Y0.log.cpm), 
             simulated.data=rowMeans(Y1.log.cpm)), 
        main="mean expression of genes") 
boxplot(list(real.data=rowVars(Y0.log.cpm), 
             simulated.data=rowVars(Y1.log.cpm)), 
        main="variance of gene expressions")

Compare mean-variance distributions

# compare the relationship between the mean and variability  
par(mfrow=c(1,3), mar=c(4,4,4,1))
heatscatter(rowMeans(Y0.log.cpm), rowCVs(Y0.log.cpm), ylim=c(0, 6), xlim=c(0, 16),
            colpal="bl2gr2rd", main="real data", xlab="mean log2-CPM", 
            ylab="coefficients of variation", cexplot=0.5, alpha = 60, cex.lab=1.25)
heatscatter(rowMeans(Y1.log.cpm), rowCVs(Y1.log.cpm), ylim=c(0, 6), xlim=c(0, 16),
     main="SPsimSeq", xlab="mean log2-CPM", ylab="coefficients of variation", 
     cexplot=0.5, alpha = 60, colpal="bl2gr2rd", cex.lab=1.25)
n.gride <- 1000
min.g   <- seq(0, 20, length.out = n.gride+1)[-n.gride]
max.g   <- seq(0, 20, length.out = n.gride+1)[-1] 
mid.g   <- (min.g+max.g)/2
f.real  <- vapply(seq_len(n.gride), FUN.VALUE = double(1), function(r){
  x <- Y0.log.cpm[rowMeans(Y0.log.cpm)<=max.g[r] & rowMeans(Y0.log.cpm)>min.g[r],]
  y <- ifelse(!is.null(dim(x)), mean(rowCVs(x)), mean(sd(x)/mean(x))) 
  y
})
f.SPsim <- vapply(seq_len(n.gride), FUN.VALUE = double(1), function(r){
  x <- Y1.log.cpm[rowMeans(Y1.log.cpm)<=max.g[r] & rowMeans(Y1.log.cpm)>min.g[r],]
  y <- ifelse(!is.null(dim(x)), mean(rowCVs(x)), mean(sd(x)/mean(x))) 
  y
})

sm1 <- loess(I(f.SPsim-f.real)~mid.g) 
plot(mid.g, f.SPsim-f.real, xlim=c(0, 14), col="lightskyblue", pch=20, cex.lab=1.25,
     cex.main=1.4, main="SPsimSeq - real data", ylab="difference", xlab="mean log2-CPM")
lines(mid.g,predict(sm1, newdata = mid.g), col="blue", lwd=3)

Means and zeroes

# compare the relationship between the  mean and fraction of zeros
par(mfrow=c(1,3), mar=c(4,4,4,1))
heatscatter(rowMeans(Y0.log.cpm), rowZeroFrac(Y0.log.cpm), ylim=c(0, 1), 
            xlim=c(0, 16), colpal="bl2gr2rd", main="real data", xlab="mean log2-CPM", 
            ylab="fraction of zero counts", cexplot=0.5, alpha = 60, cex.lab=1.25)
heatscatter(rowMeans(Y1.log.cpm), rowZeroFrac(Y1.log.cpm), ylim=c(0, 1), 
            xlim=c(0, 16), main="SPsimSeq", xlab="mean log2-CPM", 
            ylab="fraction of zero counts",  cexplot=0.5, alpha = 60,
            colpal="bl2gr2rd", cex.lab=1.25)
n.gride <- 1000
min.g   <- seq(0, 20, length.out = n.gride+1)[-n.gride]
max.g   <- seq(0, 20, length.out = n.gride+1)[-1] 
mid.g   <- (min.g+max.g)/2
f.real  <- vapply(seq_len(n.gride), FUN.VALUE = double(1), function(r){
  x <- Y0.log.cpm[rowMeans(Y0.log.cpm)<=max.g[r] & rowMeans(Y0.log.cpm)>min.g[r],]
  y <- ifelse(!is.null(dim(x)), mean(rowZeroFrac(x)), mean(x==0)) 
  y
})
f.SPsim <- vapply(seq_len(n.gride), FUN.VALUE = double(1), function(r){
  x <- Y1.log.cpm[rowMeans(Y1.log.cpm)<=max.g[r] & rowMeans(Y1.log.cpm)>min.g[r],]
  y <- ifelse(!is.null(dim(x)), mean(rowZeroFrac(x)), mean(x==0)) 
  y
})
sm1 <- loess(I(f.SPsim-f.real)~mid.g) 
plot(mid.g, f.SPsim-f.real, xlim=c(0, 14), col="lightskyblue", pch=20, cex.lab=1.25,
     cex.main=1.4, main="SPsimSeq - real data", ylab="difference", xlab="mean log2-CPM")
lines(mid.g,predict(sm1, newdata = mid.g), col="blue", lwd=3)

Also here we look at the correlation networks

# compare the correlation between genes and samples
Y0.log.cpm2 <- Y0.log.cpm[rowMeans(Y0.log.cpm>0)>0.25, ]
Y1.log.cpm2 <- Y1.log.cpm[rowMeans(Y1.log.cpm>0)>0.25, ]

cor.mat.Y0 <- cor(t(Y0.log.cpm2))
cor.mat.Y1 <- cor(t(Y1.log.cpm2)) 

cor.vec.Y0 <- cor.mat.Y0[upper.tri(cor.mat.Y0)]
cor.vec.Y1 <- cor.mat.Y1[upper.tri(cor.mat.Y1)] 

par(mfrow=c(1,3), mar=c(4,4,3.5,1))
hist(cor.vec.Y0, nclass = 30, probability = TRUE, 
     border="gray", col="steelblue1", main="real data", xlab="pairwise correlation between genes", 
     ylim=c(0, 3.5), xlim=c(-1, 1), cex.lab=1.25)
hist(cor.vec.Y1, nclass = 30, probability = TRUE, border="gray",
     col="steelblue1",  main="SPsimSeq", xlab="pairwise correlation between genes",
     ylim=c(0, 3.5), xlim=c(-1, 1), cex.lab=1.25)

plot(seq(-1, 1, 0.1), seq(-1, 1, 0.1), type="n", xlab="quantile (real data)", 
     ylab="quantile (simulated data)",  main="correlation quantile-quantile plot")
abline(0, 1, col="gray")
points(quantile(cor.vec.Y0, seq(0, 1, 0.001)), quantile(cor.vec.Y1, seq(0, 1, 0.001)), 
       col="blue", pch=20, cex=1.5, cex.lab=1.25)  
sessionInfo()

References

\printbibliography



Try the SPsimSeq package in your browser

Any scripts or data that you put into this service are public.

SPsimSeq documentation built on Nov. 8, 2020, 5:09 p.m.