Nothing
## ----start, message=FALSE, warning=FALSE--------------------------------------
library(SIAMCAT)
# this is data from Zeller et al., Mol. Syst. Biol. 2014
fn.feat.fr <-
'https://www.embl.de/download/zeller/FR-CRC/FR-CRC-N141_tax-ab-specI.tsv'
fn.meta.fr <-
'https://www.embl.de/download/zeller/FR-CRC/FR-CRC-N141_metadata.tsv'
# this is the external dataset from Yu et al., Gut 2017
fn.feat.cn <-
'https://www.embl.de/download/zeller/CN-CRC/CN-CRC-N128_tax-ab-specI.tsv'
fn.meta.cn <-
'https://www.embl.de/download/zeller/CN-CRC/CN-CRC-N128_metadata.tsv'
## ----siamcat_fr---------------------------------------------------------------
# features
# be vary of the defaults in R!!!
feat.fr <- read.table(fn.feat.fr, sep='\t', quote="",
check.names = FALSE, stringsAsFactors = FALSE)
# the features are counts, but we want to work with relative abundances
feat.fr.rel <- prop.table(as.matrix(feat.fr), 2)
# metadata
meta.fr <- read.table(fn.meta.fr, sep='\t', quote="",
check.names=FALSE, stringsAsFactors=FALSE)
# create SIAMCAT object
siamcat.fr <- siamcat(feat=feat.fr.rel, meta=meta.fr,
label='Group', case='CRC')
## ----siamcat_cn---------------------------------------------------------------
# features
feat.cn <- read.table(fn.feat.cn, sep='\t', quote="",
check.names = FALSE)
feat.cn.rel <- prop.table(as.matrix(feat.cn), 2)
# metadata
meta.cn <- read.table(fn.meta.cn, sep='\t', quote="",
check.names=FALSE, stringsAsFactors = FALSE)
# SIAMCAT object
siamcat.cn <- siamcat(feat=feat.cn.rel, meta=meta.cn,
label='Group', case='CRC')
## ----preprocessing_fr---------------------------------------------------------
siamcat.fr <- filter.features(
siamcat.fr,
filter.method = 'abundance',
cutoff = 0.001,
rm.unmapped = TRUE,
verbose=2
)
siamcat.fr <- normalize.features(
siamcat.fr,
norm.method = "log.std",
norm.param = list(log.n0 = 1e-06, sd.min.q = 0.1),
verbose = 2
)
## ----build_model_fr, results='hide'-------------------------------------------
siamcat.fr <- create.data.split(
siamcat.fr,
num.folds = 5,
num.resample = 2
)
siamcat.fr <- train.model(
siamcat.fr,
method = "lasso"
)
## ----predict_evaluate_fr, results='hide'--------------------------------------
siamcat.fr <- make.predictions(siamcat.fr)
siamcat.fr <- evaluate.predictions(siamcat.fr)
## ----normalize_cn-------------------------------------------------------------
siamcat.cn <- normalize.features(siamcat.cn,
norm.param=norm_params(siamcat.fr),
feature.type='original',
verbose = 2)
## ----predict_cn, results='hide'-----------------------------------------------
siamcat.cn <- make.predictions(
siamcat = siamcat.fr,
siamcat.holdout = siamcat.cn,
normalize.holdout = FALSE)
## ----alternative_pipeline_cn, eval=FALSE--------------------------------------
# ## Alternative Code, not run here
# siamcat.cn <- siamcat(feat=feat.cn.rel, meta=meta.cn,
# label='Group', case='CRC')
# siamcat.cn <- make.predictions(siamcat = siamcat.fr,
# siamcat.holdout = siamcat.cn,
# normalize.holdout = TRUE)
## ----eval_cn, message=FALSE---------------------------------------------------
siamcat.cn <- evaluate.predictions(siamcat.cn)
## ----eval_plot, eval=FALSE----------------------------------------------------
# model.evaluation.plot('FR-CRC'=siamcat.fr,
# 'CN-CRC'=siamcat.cn,
# colours=c('dimgrey', 'orange'))
## ----session_info-------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.