Nothing
#' @title Estimate gene specific count-depth relationships
#' @param Data matrix of un-normalized expression counts. Rows are genes and
#' columns are samples.
#' @param SeqDepth vector of sequencing depths estimated as columns sums of
#' un-normalized expression matrix.
#' @param FilterCellNum the number of non-zero expression estimate required to
#' include the genes into the SCnorm fitting (default = 10). The initial
#' @param Tau value of quantile for the quantile regression used to estimate
#' gene-specific slopes (default is median, Tau = .5 ).
#' @param ditherCounts whether to dither/jitter the counts, may be used for data
#' with many ties, default is FALSE.
#' @description This is the gene-specific fitting function, where a median
#' (Tau = .5) quantile regression is fit for each gene. Only genes having at
#' least 10 non-zero expression values are considered.
#' @return vector of estimated slopes.
#' @author Rhonda Bacher
#' @export
#' @importFrom quantreg rq dither
#' @importFrom BiocParallel bplapply
#' @examples
#' data(ExampleSimSCData)
#' myslopes <- getSlopes(ExampleSimSCData)
getSlopes <- function(Data, SeqDepth = 0, Tau = .5, FilterCellNum = 10, ditherCounts=FALSE) {
if(any(SeqDepth==0))
{SeqDepth = colSums(Data)}
NumNonZeros <- rowSums(Data!=0)
Genes <- names(which(NumNonZeros >= FilterCellNum)) ##filter for now
LogData <- redoBox(Data, 0) #log data
AllReg <- unlist(BiocParallel::bplapply(X = seq_len(length(Genes)), FUN = quickReg,
InputData = list(LogData, SeqDepth, Genes, Tau, ditherCounts)))
return(AllReg)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.