Nothing
##################################################################################
### CLASSES DEFINITIONS ###
##################################################################################
## Class RtreemixData.
setClass("RtreemixData",
representation = representation(
## Binary patterns (matrix with rows=patients,cols=genetic events), without the null event
Sample = "matrix",
## Patient IDs
Patients = "character",
## Names of genetic events (length L)
Events = "character",
## Description of the object
Description = "character"),
prototype = prototype(
Sample = matrix(integer(0), 0, 0),
Patients = character(),
Events = character(),
Description = character(0)))
################################################################################
## Class RtreemixModel. Extends the class RtreemixData.
setClass("RtreemixModel",
representation = representation(
## The weight vector of the model
Weights = "numeric",
## Confidence intervals for the weights (from bootstrap analysis)
WeightsCI = "list",
## The responsibilities
Resp = "matrix",
## The complete sample matrix (if there were some missing data otherwise empty)
CompleteMat = "matrix",
## Indicator of the presence of a star component (mostly relevant for models with a single tree component)
Star = "logical",
## The list of the graphs each for every tree component of the mixture model
Trees = "list" ),
prototype = prototype(
Weights = numeric(0),
WeightsCI = list(),
Resp = matrix(numeric(0), 0, 0),
CompleteMat = matrix(integer(0), 0, 0),
Star = logical(0),
Trees = list()),
contains = "RtreemixData")
################################################################################
## Class RtreemixSim. Extends the class RtreemixModel.
setClass("RtreemixSim",
representation = representation(
## Data drawn (or simulated in a waiting time simulation) from an oncogenetic trees mixture model
SimPatterns = "RtreemixData",
## Sampling mode for the simulations: exponential or constant
SamplingMode = "character",
## Sampling parameter that corresponds to the sampling mode
SamplingParam = "numeric",
## Waiting times of the simulated patterns
WaitingTimes = "numeric",
## Sampling times of the simulated patterns
SamplingTimes = "numeric"
),
prototype = prototype(
SimPatterns = new("RtreemixData", Sample = matrix(integer(0), 0, 0)),
SamplingMode = character(0),
SamplingParam = numeric(0),
WaitingTimes = numeric(0),
SamplingTimes = numeric(0)
),
contains = "RtreemixModel")
################################################################################
## Class RtreemixStats. Extends the class RtreemixData.
setClass("RtreemixStats",
representation = representation(
## The underlying model for calculating the (log, weighted) likelihoods.
Model = "RtreemixModel",
## The log-likelihoods of the set of patterns
LogLikelihoods = "numeric",
## The weighted likelihoods for the set of patterns
WLikelihoods = "matrix"),
prototype = prototype(
Model = new("RtreemixModel", Weights = numeric(0), Trees = list()),
LogLikelihoods = numeric(0),
WLikelihoods = matrix(numeric(0), 0, 0)
),
contains = "RtreemixData")
################################################################################
## Class RtreemixGPS. Extends the class RtreemixModel.
setClass("RtreemixGPS",
representation = representation(
## Underlying model for the GPS is calculation.
Model = "RtreemixModel",
## Sampling mode for the simulations of the waiting time process: exponential or constant
SamplingMode = "character",
## Sampling parameter that corresponds to the sampling mode
SamplingParam = "numeric",
## GPS vector associated to the corresponding dataset of patterns
GPS = "numeric",
## Confidence intervals for the GPS values (from bootstrap analysis)
gpsCI = "matrix"
),
prototype = prototype(
Model = new("RtreemixModel", Weights = numeric(0), Trees = list()),
SamplingMode = character(0),
SamplingParam = numeric(0),
GPS = numeric(0),
gpsCI = matrix(numeric(0), 0, 0)
),
contains = "RtreemixData")
################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.