Nothing
# Copyright (c) 2008 Camille Maumet
# GPL >= 3 (LICENSE.txt) licenses.
#-------------------------- AllClasses -----------------------------------------
# This file contains all the class definitions
#
# Author: Camille Maumet
# Creation: March 2008
# Last Modified: 17 Jul. 2008
#-------------------------------------------------------------------------------
############################ Private (not in namespace) ########################
# Store the cross-validated error rate of a one-layer CV
setClass("cvErrorRate", representation(cvErrorRate = "numeric",
seErrorRate = "numeric",
classErrorRates = "matrix"))
# Store the error rates of a one-layer CV
setClass("errorRate1stLayerCV",
representation( errorRatePerFold = "matrix",
noSamplesPerFold = "numeric",
cvErrorRate = "cvErrorRate"))
# Store the genes selected in a one-layer CV for each option (threshold or size of subset)
setClass("selectedGenesPerOneOption", representation("list",
optionValue="numeric"))
# Store a frequency and the corresponding list of genes
setClass("frequencyGenes",
representation( frequ="numeric",
genesList="character"))
# Store a list frequencies with their corresponding list of genes
setClass("frequencyTopGenePerOneModel", "list")
# Store the genes selected in a one-layer CV (per model and fold and per frequency)
setClass("selectedGenes1stLayerCV",
representation( selectedGenesPerFold = "list",
frequencyTopGene = "list"))
# Store the results of a single one-layer CV
setClass("resultSingle1LayerCV",
representation( errorRates = "errorRate1stLayerCV",
selectedGenes = "selectedGenes1stLayerCV",
executionTime = "numeric",
bestOptionValue = "numeric"))
# Store the results of a repeated one-layer CV
setClass("resultRepeated1LayerCV",
representation( original1LayerCV = "list",
summaryErrorRate = "cvErrorRate",
summaryFrequencyTopGenes = "list",
bestOptionValue = "numeric",
executionTime = "numeric"))
# Store the cross-validated error rate of a two-layer CV
setClass("cvErrorRate2ndLayer",
representation( seFinalErrorRate = "numeric",
finalErrorRate = "numeric",
classErrorRates = "numeric"))
# Store the error rates of a two-layer CV
setClass("errorRate2ndLayerCV",
representation( errorRatePerFold = "numeric",
noSamplesPerFold = "numeric",
cvErrorRate = "cvErrorRate2ndLayer"))
# Store the genes selected in a fold of a two-layer CV and the corresponding option and number of genes
setClass("selectedGenes",
representation( optionValue="numeric",
noOfGenes="numeric",
genesList="matrix"))
# Store the genes selected in a single two-layer CV
setClass("selectedGenes2ndLayerCV", "list")
# Store the genes selected in a single two-layer CV
setClass("result2LayerCV",
representation( results1stLayer = "list",
errorRates = "errorRate2ndLayerCV",
selectedGenes = "selectedGenes2ndLayerCV",
avgBestOptionValue = "numeric",
executionTime ="numeric"))
# Store the genes selected in a repeated two-layer CV
setClass("resultRepeated2LayerCV",
representation( original2LayerCV = "list",
summaryErrorRate = "cvErrorRate2ndLayer",
avgBestOptionValue = "numeric",
executionTime ="numeric"))
## Store the microarray data or NULL if it has not been loaded yet
#setClassUnion("ExpressionSetOrNull", c("ExpressionSet", "NULL"))
#
################################# Public ######################################
## Store the microarray data and its related files
#setClass("dataset", representation( dataId = "character",
# dataPath = "character",
# geneExprFile = "character",
# classesFile = "character",
# eset = "ExpressionSetOrNull"
# ),
# prototype( dataPath="." ) )
# Store the results of a repeated one-layer CV or NULL if it has not been computed yet
setClassUnion("resultRepeated1LayerCVOrNULL",c("resultRepeated1LayerCV", "NULL"))
# Store the results of a repeated two-layer CV or NULL if it has not been computed yet
setClassUnion("resultRepeated2LayerCVorNULL",c("resultRepeated2LayerCV", "NULL"))
# Store the options related to an assessment (sizes of subset of thresholds)
setClass("featureSelectionOptions", representation( optionValues = "numeric",
noOfOptions = "numeric", "VIRTUAL"))
# Store the size of subsets for RFE
setClass("geneSubsets", representation( "featureSelectionOptions",
maxSubsetSize = "numeric",
speed = "character"),
prototype( speed = "high"))
# Store the thresholds for NSC
setClass("thresholds", representation( "featureSelectionOptions"))
# Store the final classifier corresponding to an assessment (can then be used to
# classify new samples)
setClass("finalClassifier", representation( genesFromBestToWorst = "character",
models = "list" ))
setIs("geneSubsets", "featureSelectionOptions")
setIs("thresholds", "featureSelectionOptions")
# Final classifier or NULL if it has not been computed yet
setClassUnion("finalClassifierOrNULL",c("finalClassifier", "NULL"))
# Store the options and results of an assessment
setClass("assessment", representation( dataset = "ExpressionSet",
noFolds1stLayer = "numeric",
noFolds2ndLayer = "numeric",
#noTopGene = "numeric",
classifierName = "character",
featureSelectionMethod = "character",
typeFoldCreation = "character",
svmKernel = "character",
noOfRepeats = "numeric",
featureSelectionOptions = "featureSelectionOptions",
resultRepeated1LayerCV = "resultRepeated1LayerCVOrNULL",
resultRepeated2LayerCV = "resultRepeated2LayerCVorNULL",
finalClassifier = "finalClassifierOrNULL"
),
prototype( noFolds1stLayer=10,
noFolds2ndLayer=9,
classifierName="svm",
featureSelectionMethod="rfe",
typeFoldCreation="original",
svmKernel="linear",
noOfRepeats=2,
resultRepeated1LayerCV=NULL,
resultRepeated2LayerCV=NULL,
finalClassifier=NULL ))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.