Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA")
# install the ReactomeGSA.data package for the example data
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA.data")
## -----------------------------------------------------------------------------
library(ReactomeGSA.data)
data(jerby_b_cells)
jerby_b_cells
## -----------------------------------------------------------------------------
library(ReactomeGSA)
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = TRUE)
## -----------------------------------------------------------------------------
gsva_result
## -----------------------------------------------------------------------------
pathway_expression <- pathways(gsva_result)
# simplify the column names by removing the default dataset identifier
colnames(pathway_expression) <- gsub("\\.Seurat", "", colnames(pathway_expression))
pathway_expression[1:3,]
## -----------------------------------------------------------------------------
# find the maximum differently expressed pathway
max_difference <- do.call(rbind, apply(pathway_expression, 1, function(row) {
values <- as.numeric(row[2:length(row)])
return(data.frame(name = row[1], min = min(values), max = max(values)))
}))
max_difference$diff <- max_difference$max - max_difference$min
# sort based on the difference
max_difference <- max_difference[order(max_difference$diff, decreasing = T), ]
head(max_difference)
## ---- fig.width=7, fig.height=4-----------------------------------------------
plot_gsva_pathway(gsva_result, pathway_id = rownames(max_difference)[1])
## ---- fig.width=7, fig.height=8-----------------------------------------------
# Additional parameters are directly passed to gplots heatmap.2 function
plot_gsva_heatmap(gsva_result, max_pathways = 15, margins = c(6,20))
## ---- fig.width=7, fig.height=4-----------------------------------------------
# limit to selected B cell related pathways
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result,
pathway_ids = relevant_pathways, # limit to these pathways
margins = c(6,30), # adapt the figure margins in heatmap.2
dendrogram = "col", # only plot column dendrogram
scale = "row", # scale for each pathway
key = FALSE, # don't display the color key
lwid=c(0.1,4)) # remove the white space on the left
## ---- fig.width=6, fig.height=4-----------------------------------------------
plot_gsva_pca(gsva_result)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.