Nothing
## ----setup, include=FALSE, echo=FALSE-----------------------------------------
knitr::opts_chunk$set(eval=FALSE)
## -----------------------------------------------------------------------------
# # Differential gene expression analysis for gene level RNA data.
# diffGeneExprs <- getDiffExpressedGenes(dataObject=accmini, DrawPlots=TRUE,
# adj.method="BH", adj.pval=0.05, raw.pval=0.05, logFC=2, hmTopUpN=10,
# hmTopDownN=10)
# # Show head for expression outputs
# diffGeneExprs
# showResults(diffGeneExprs[[1]])
# toptableOut <- showResults(diffGeneExprs[[1]])
## -----------------------------------------------------------------------------
# #Correlation between gene expression values and copy number
# corrGECN <- getCNGECorrelation(dataObject=accmini, adj.method="BH",
# adj.pval=0.9, raw.pval=0.05)
# corrGECN
## -----------------------------------------------------------------------------
# # Mutation frequencies
# mutFrq <- getMutationRate(dataObject=accmini)
# head(mutFrq[order(mutFrq[, 2], decreasing=TRUE), ])
## ----eval=FALSE---------------------------------------------------------------
# # BRCA data with mRNA (Both array and RNASeq), GISTIC processed copy number data
# # mutation data and clinical data
# # (Depends on bandwidth this process may take long time)
# brcaData <- getFirehoseData (dataset="BRCA", runDate="20140416",
# gistic2Date="20140115", clinic=TRUE, RNAseqGene=TRUE, mRNAArray=TRUE,
# Mutation=TRUE)
#
# # Differential gene expression analysis for gene level RNA data.
# # Heatmaps are given below.
# diffGeneExprs <- getDiffExpressedGenes(dataObject=brcaData,DrawPlots=TRUE,
# adj.method="BH", adj.pval=0.05, raw.pval=0.05, logFC=2, hmTopUpN=100,
# hmTopDownN=100)
# # Show head for expression outputs
# diffGeneExprs
# showResults(diffGeneExprs[[1]])
# toptableOut <- showResults(diffGeneExprs[[1]])
#
# # Correlation between expresiion profiles and copy number data
# corrGECN <- getCNGECorrelation(dataObject=brcaData, adj.method="BH",
# adj.pval=0.05, raw.pval=0.05)
#
# corrGECN
# showResults(corrGECN[[1]])
# corRes <- showResults(corrGECN[[1]])
#
# # Gene mutation frequincies in BRCA dataset
# mutFrq <- getMutationRate(dataObject=brcaData)
# head(mutFrq[order(mutFrq[,2],decreasing=TRUE),])
#
# # PIK3CA which is one of the most frequently mutated gene in BRCA dataset
# # KM plot is given below.
# clinicData <- getData(brcaData,"clinical")
# head(clinicData)
# clinicData <- clinicData[, 3:5]
# clinicData[is.na(clinicData[, 3]), 3] <- clinicData[is.na(clinicData[, 3]), 2]
# survData <- data.frame(Samples=rownames(clinicData),
# Time=as.numeric(clinicData[, 3]), Censor=as.numeric(clinicData[, 1]))
# getSurvival(dataObject=brcaData, geneSymbols=c("PIK3CA"),
# sampleTimeCensor=survData)
## -----------------------------------------------------------------------------
# # Creating dataset analysis summary figure with getReport.
# # Figure will be saved as PDF file.
# library("Homo.sapiens")
# locations <- genes(Homo.sapiens, columns="SYMBOL")
# locations <- as.data.frame(locations)
# locations <- locations[,c(6,1,5,2:3)]
# locations <- locations[!is.na(locations[,1]), ]
# locations <- locations[!duplicated(locations[,1]), ]
# rownames(locations) <- locations[,1]
# getReport(dataObject=brcaData, DGEResult1=diffGeneExprs[[1]],
# DGEResult2=diffGeneExprs[[2]], geneLocations=locations)
## ----fig.width=6,fig.height=6,fig.align='center'------------------------------
# # Creating survival data frame and running analysis for
# # FCGBP which is one of the most frequently mutated gene in the toy data
# # Running following code will provide following KM plot.
# clinicData <- getData(accmini,"clinical")
# head(clinicData)
# clinicData <-
# clinicData[, c("vital_status", "days_to_death", "days_to_last_followup")]
# missingDays2LF <- is.na(clinicData[["days_to_last_followup"]])
# clinicData[missingDays2LF, "days_to_last_followup"] <- clinicData[missingDays2LF, "days_to_death"]
# survData <- data.frame(Samples=rownames(clinicData),
# Time=as.numeric(clinicData[, 3]), Censor=as.numeric(clinicData[, 1]))
# getSurvival(dataObject=accmini, geneSymbols=c("FCGBP"), sampleTimeCensor=survData)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.