R/ROC.hyndman.R

#% is commenting prior to documentation and integration
#% into the ROC package for bioconductor
#%######################################################
#%### FUNCTIONS FOR KERNEL ESTIMATION OF ROC CURVES  ###
#%### Last updated by RJH. 17 July 2003              ###
#%### Version of functions for public release        ###
#%######################################################
#%
#%#################################
#%### ROC CALCULATION FROM CDFS ###
#%#################################
#%
#%# Return ROC function based on Fx and Fy inputs
#%# Computed at x
#%# changed to ROC.hh by vjc, for hall hyndman
#%ROC.hh <- function(x,Fx,y,Fy,nx=200)
#%{
#%    xx <- seq(min(x,y),max(x,y),l=nx)
#%    newFx <- approx(x,Fx,xout=xx,yleft=0,yright=1)
#%    newFy <- approx(y,Fy,xout=xx,yleft=0,yright=1)
#%    return(list(x=c(0,rev(1-newFx$y),1),y=c(0,rev(1-newFy$y),1)))
#%}
#%
#%##################################################
#%### ROC ESTIMATION using empirical cdf         ###
#%##################################################
#%
#%# Step function estimate of ROC curve based on empirical cdfs
#%ROC.rawest <- function(x,y)
#%{
#%    require(Hmisc)
#%    tmp <- reduce(x,y)
#%    tmpx <- ecdf(tmp$x,pl=F)
#%    tmpy <- ecdf(tmp$y,pl=F)
#%    xy <- sort(unique(c(tmp$x,tmp$y)))
#%    Fxx <- approx(tmpx$x[-1],tmpx$y[-1],xy,yleft=0,yright=1,method="constant",f=1)$y
#%    Fyy <- approx(tmpy$x[-1],tmpy$y[-1],xy,yleft=0,yright=1,method="constant",f=1)$y
#%    return(list(x=c(0,rev(1-Fxx),1),y=c(0,rev(1-Fyy),1)))
#%}
#% 
#%###############################################
#%### ROC ESTIMATION using kernel cdf         ###
#%###############################################
#%
#%# Kernel estimate of ROC curve with bandwidths hx and hy
#%# If bandwidths missing, uses method from ROC.h function
#%# See bandwidths.R for details.
#%
#%ROC.est <- function(x,y,hx,hy,conf=95,intervals=TRUE,...)
#%{
#%    if(missing(hx) | missing(hy))
#%    {
#%        hopt <- ROC.h(x,y,...)
#%        hx <- hopt$hx
#%        hy <- hopt$hy
#%    }
#%    lo <- min(min(x)-5*hx,min(y)-5*hy)
#%    hi <- max(max(x)+5*hx,max(y)+5*hy)
#%    xgrid <- seq(lo,hi,l=200)
#%    Fx <- cdf.est(x,hx,xgrid)
#%    Fy <- cdf.est(y,hy,xgrid)
#%    
#%    p <- c(0,rev(1-Fx$y),1)
#%    Rhat <- c(0,rev(1-Fy$y),1)
#%    
#%    if(intervals)
#%    {
#%        tmp <- ASMCONF.est(x,y,alpha=1-conf/100)
#%        sig2 <- approx(tmp$p,tmp$sigma2,xout=p)$y
#%        z <- abs(qnorm(0.5-0.005*conf))
#%        lo <- pmax(Rhat - z*sig2, 0)
#%        hi <- pmin(Rhat + z*sig2, 1)
#%        return(list(x=p,y=Rhat,hx=hx,hy=hy,lo=lo, hi=hi, s2=sig2))
#%    }
#%    else
#%        return(list(x=p,y=Rhat,hx=hx,hy=hy))
#%}
#%
#%
#%###############################################
#%### Utility functions for kernel estimation ###
#%###############################################
#%
#%# Evaluate K on grid
#%make.K <- function(x,h,xgrid,ngrid=200,lo,hi)
#%{
#%    # Construct grid if necessary
#%    if(missing(xgrid))
#%    {
#%        if(missing(lo))
#%            lo <- min(x)-3*h
#%        if(missing(hi))
#%            hi <- max(x)+3*h
#%        xgrid <- seq(lo,hi,l=ngrid)
#%    }    
#%    # Setup necessary variables
#%    n <- length(x)
#%    ngrid <- length(xgrid)
#%    Kmat1 <- Kmat2 <- Kmat3 <- matrix(NA,ngrid,n)
#%    for(i in 1:ngrid)
#%    {
#%        xx <- (xgrid[i]-x)/h
#%        Kmat1[i,] <- pnorm(xx)
#%        Kmat2[i,] <- dnorm(xx)
#%        Kmat3[i,] <- -xx*Kmat2[i,]
#%    }
#%    # Return results
#%    return(list(x=xgrid,K1=Kmat1,K2=Kmat2,K3=Kmat3))
#%}
#%
#%cdf.est <- function(x,h=h.lloyd2(x),xgrid)
#%{
#%    if(missing(xgrid))
#%        xgrid <- seq(min(x)-3*h,max(x)+3*h,l=200)
#%    n <- length(xgrid)
#%    Fx <- cumsum(density(x,bw=h,from=xgrid[1],to=xgrid[n],n=n)$y)
#%    return(list(x=xgrid,y=Fx/Fx[n]))
#%}
#%
#%pdf.est <- function(x,h=bw.SJ(x),xgrid)
#%{
#%    if(missing(xgrid))
#%        xgrid <- seq(min(x)-3*h,max(x)+3*h,l=200)
#%    n <- length(xgrid)
#%    return(list(x=xgrid,y=density(x,bw=h,from=xgrid[1],to=xgrid[n],n=n)$y))
#%}
#%
#%#  FUNCTION reduces (x,y) values by removing repeated x values.
#%#  Points with smaller y-value are retained.
#%#  REQUIRED ARUMENTS:", 
#%#      x - vector of x-coordinates of function
#%#      y - vector of y -coordinates of function
#%
#%reduce <- function (x = stop("Argument is missing"), y = stop("Argument is missing")) 
#%{
#%    Y <- y[order(x)]
#%    X <- sort(x)
#%    tmp <- match(unique(X), X)
#%    X <- X[tmp]
#%    Y <- Y[tmp]
#%    return(list(x=X,y=Y))
#%}
#%
#%
#%#################################
#%### BANDWIDTH SELECTION       ###
#%### FOR KERNEL ROC ESTIMATION ###
#%#################################
#%
#%# Main bandwidth selection function
#%# Method:
#%#     norm: assumes normal densities
#%#     lloyd: uses Lloyd's plug-in estimator for cdfs
#%#     plugin: uses plug-in method of Hall and Hyndman
#%#     mix: uses recommended method of Hall and Hyndman
#%
#%ROC.h <- function(x,y,method="mix",...)
#%{
#%    if(method=="norm")
#%        return(h.norm(x,y))
#%    else if(method=="lloyd")
#%        return(list(hx=h.lloyd(x),hy=h.lloyd(y)))
#%    else if(method=="plugin")
#%        return(pluginbands(x,y,...))
#%    else if(method=="mix")
#%    {
#%        hn <- h.norm(x,y)
#%        hp <- pluginbands(x,y,...)
#%        return(list(hx=min(hn$hx,hp$hx),hy=min(hn$hy,hp$hy)))
#%    }
#%    else
#%        stop("Unknown method")
#%}
#%
#%## NORMAL REFERENCE BANDWIDTH SELECTION
#%
#%# Compute optimal h for each variable assuming normal densities
#%# with unknown means and variances
#%h.norm <- function(x,y)
#%{
#%    mx <- mean(x)
#%    my <- mean(y)
#%    sx <- sqrt(var(x))
#%    sy <- sqrt(var(y))
#%    nx <- length(x)
#%    ny <- length(y)
#%    h.norm2(mx,sx,my,sy,nx,ny)
#%}
#%
#%# Compute optimal h for each variable assuming normal densities
#%# with known means and variances
#%h.norm2 <- function(mx,sx,my,sy,nx,ny)
#%{
#%    hx <- hx.norm(mx,sx,my,sy,nx)
#%    hy <- hx.norm(my,sy,mx,sx,ny)
#%    return(hx=hx,hy=hy)
#%}
#%
#%# Optimal h for x variable assuming normal densities
#%# with known means and variances
#%hx.norm <- function(mx,sx,my,sy,n)
#%{
#%    kappa <- 0.5641896
#%    #kappa2 <- 1
#%    sum1 <- sx^2+sy^2
#%    sum2 <- sum1+sx^2
#%    sum3 <- (mx-my)^2
#%    f1 <- 4*sqrt(pi)*kappa * sx^3*sum1^2.5 / (sqrt(sum2)*(sy^4+sy^2*sx^2 + 2*sx^2*sum3))
#%    c3 <-f1*exp(sum3*sx^2/(sum1*sum2))
#%    return((c3/n)^(1/3))
#%}
#%
#%
#%## LLOYD PLUG-IN RULE FOR kernel estimate of CDF
#%
#%h.lloyd <- function(x)
#%{
#%    n <- length(x)
#%    if(n < 2)
#%        stop("Insufficient data")
#%    s <- IQR(x) / 1.349
#%    mu <- mean(x)
#%    psi6 <- -0.5289/s^7
#%    h4 <- (-6/psi6/n)^(1/7)
#%    xx <- seq(min(x)-s,max(x)+s,l=512)
#%    pdf4deriv <- denest(x,deriv=4,h=h4,xgrid=xx)
#%    psi4 <- mean(approx(xx,pdf4deriv$y,xout=x)$y,na.rm=T)
#%    h2 <- (0.7979/psi4/n)^(1/5)
#%    pdf2deriv <- denest(x,deriv=2,h=h2,xgrid=xx)
#%    psi2 <- mean(approx(xx,pdf2deriv$y,xout=x)$y,na.rm=T)
#%    h <- (-0.5641896/psi2/n)^(1/3)
#%    if(h < 0)
#%        return(h.lloyd2(x))
#%    else
#%        return(h)
#%}
#%
#%# Normal reference rule for kernel estimate of CDF
#%h.lloyd2 <- function(x)
#%{
#%    n <- length(x)
#%    s <- IQR(x) / 1.349
#%    return(1.583*s/n^(1/3))
#%}
#%
#%# Estimate density and derivatives
#%denest <- function(x,deriv=0,h,xgrid,ngrid=200,lo,hi)
#%{
#%    # Construct grid if necessary
#%    if(missing(xgrid))
#%    {
#%        if(missing(lo))
#%            lo <- min(x)-3*h
#%        if(missing(hi))
#%            hi <- max(x)+3*h
#%        xgrid <- seq(lo,hi,l=ngrid)
#%    } 
#%       
#%    # Setup necessary variables
#%    n <- length(x)
#%    xmat <- sweep(matrix(xgrid, nrow=length(xgrid), ncol=n), 2, x)
#%    if(deriv==-1)
#%        return(cdf.est(x,h,xgrid))
#%    else if(deriv==0)
#%        return(pdf.est(x,h,xgrid))
#%    else if(deriv==1)
#%        Kmat <- -xmat*dnorm(xmat)
#%    else if(deriv==2)
#%        Kmat <- dnorm(xmat)*(xmat^2-1)
#%    else if(deriv==3)
#%        Kmat <- dnorm(xmat)*xmat*(3-xmat^2)
#%    else if(deriv==4)
#%        Kmat <- dnorm(xmat)*(3-6*xmat^2+xmat^4)   
#%    else
#%        stop("Not implemented")
#%    # Return results
#%    return(list(x=xgrid,y=apply(Kmat,1,sum)/(n*h^(deriv+1))))
#%}
#%
#%
#%## Utility functions for computing numerical derivatives
#%# Assume x is sorted in ascending order
#%
#%# 2nd derivatives
#%deriv2 <- function(y,x)
#%{
#%    n <- length(x)
#%    del <- x[2]-x[1]
#%    c(NA,y[3:n]-2*y[2:(n-1)]+y[1:(n-2)],NA)/(del^2)
#%}
#%
#%# 4th derivatives
#%deriv4 <- function(y,x)
#%{
#%    deriv2(deriv2(y,x),x)
#%}
#%
#%### PLUG IN METHOD OF HALL AND HYNDMAN
#%
#%# PLUG IN SELECTOR
#%pluginbands <- function(x,y)
#%{
#%    m <- length(x)
#%    n <- length(y)
#%    mx <- mean(x)
#%    my <- mean(y)
#%    sx <- sqrt(var(x))
#%    sy <- sqrt(var(y))
#%    rmin <- min(mx-5*sx,my-5*sy)
#%    rmax <- max(mx+5*sx,my+5*sy)
#%
#%    R <- n/m
#%    lambda1 <- 0.5/sqrt(pi)
#%    lambda2 <- 0.5/sqrt(2*pi)
#%    kappa2 <- 1
#%    I1 <- abs(integrate(intf9,rmin,rmax,mx=my,sx=sy,my=mx,sy=sx)$value)
#%    I2 <- abs(integrate(intf3,rmin,rmax,mx=my,sx=sy,my=mx,sy=sx)$value)
#%    I3 <- abs(integrate(intf2,rmin,rmax,mx=my,sx=sy,my=mx,sy=sx)$value)
#%    H <- n^(-0.4)*((2*R*lambda1*I1 + lambda2*I2)/(2*kappa2^2*I3^2))^(0.2)
#%
#%    I4 <- abs(integrate(intf5,rmin,rmax,mx=mx,sx=sx,my=my,sy=sy)$value)
#%    I5 <- abs(integrate(intf6,rmin,rmax,mx=mx,sx=sx,my=my,sy=sy)$value)
#%    J <- 64*abs(integrate(intf10,rmin,rmax,mx=mx,sx=sx,my=my,sy=sy)$value)
#%    rho <- h.lloyd(y)/h.lloyd(x)
#%    H2 <- (3*J/(m*n*sqrt(2*pi)*(1+2*rho^2)^1.5*(2*rho^2*I4+I5)^2))^(1/7)
#%    H1 <- rho*H2
#%
#%    return(H,H1,H2)
#%}
#%
#%
#%## FUNCTIONS TO COMPUTE INTEGRALS CONTAINING NORMAL DENSITIES
#%
#%fgderiv <- function(x,mx,sx,my,sy)
#%{
#%    xx <- (x-mx)/sx
#%    yy <- (x-my)/sy
#%    f <- dnorm(xx)/sx
#%    g <- dnorm(yy)/sy
#%    fdash <- -xx*f/sx
#%    gdash <- -yy*g/sy
#%    fdash2 <- (xx^2-1)*f/sx^2
#%    gdash2 <- (yy^2-1)*g/sy^2
#%    fdash3 <- xx*(3-xx^2)*f/sx^3
#%    gdash3 <- yy*(3-yy^2)*g/sy^3
#%    return(f,g,fdash,gdash,fdash2,gdash2,fdash3,gdash3)
#%}
#%
#%## fg^2 assuming normal densities
#%fg2 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return(N$f*N$g^2)
#%}
#%
#%## (f'g)^2 assuming normal densities
#%f1g2 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return((N$fdash*N$g)^2)
#%}
#%
#%## f.f''.g
#%intf2 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return(N$f*N$fdash2*N$g)
#%}
#%
#%## (fg)^2
#%intf3 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return((N$f*N$g)^2)
#%}
#%
#%
#%## g^2.f'.f'''
#%intf5 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return(N$fdash*N$fdash3*N$g^2)
#%}
#%
#%## g g'' (f')^2
#%intf6 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return(N$fdash^2*N$gdash2*N$g)
#%}
#%
#%## f^3.g
#%intf9 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return(N$f^3*N$g)
#%}
#%
#%## g^3.f.(f')^2
#%intf10 <- function(x,mx,sx,my,sy)
#%{
#%    N <- fgderiv(x,mx,sx,my,sy)
#%    return(N$fdash^2*N$f*N$g^3)
#%}
#%
#%## COMPUTE TRUE ROC FUNCTIONS
#%
#%
#%# Assuming normal densities
#%ROC.norm <- function(mx,sx,my,sy,nx=200)
#%{
#%    x <- seq(mx-5*sx,mx+5*sx,l=nx)
#%    y <- seq(my-5*sy,my+5*sy,l=nx)
#%    ROC.hh(x,pnorm(x,mx,sx),y,pnorm(y,my,sy),nx=nx)
#%}
#%
#%ROC.beta <- function(ax,bx,ay,by,nx=200)
#%{
#%    x <- seq(0,1,l=nx)
#%    ROC.hh(x,pbeta(x,ax,bx),x,pbeta(x,ay,by),nx=nx)
#%}
#%
#%ROC.t <- function(vx,vy,nx=200)
#%{
#%    x <- seq(-5,5,l=nx)
#%    ROC.hh(x,pt(x,vx),x,pt(x,vy),nx=nx)
#%}
#%
#%ROC.pareto <- function(cx,cy,ax,ay,nx=200)
#%{
#%    x <- seq(-5,5,l=nx)
#%    ROC.hh(x,ppareto(x,cx,ax),x,ppareto(x,cy,ay),nx=nx)
#%}
#%
#%ROC.gamma <- function(sx,sy,nx=200)
#%{
#%    x <- seq(0,10,l=nx)
#%    ROC.hh(x,pgamma(x,sx),x,pgamma(x,sy),nx=nx)
#%}
#%
#%ROC.t.mix <- function(mx1,mx2,vx1,vx2,my1,my2,vy1,vy2,nx=200,px1=0.5,px2=0.5,py1=0.5,py2=0.5)
#%{
#%    sump <- px1+px2
#%    px1 <- px1/sump
#%    px2 <- px2/sump
#%    sump <- py1+py2
#%    py1 <- py1/sump
#%    py2 <- py2/sump
#%    x <- seq(min(mx1,mx2)-9,max(mx1,mx2)+9,l=nx)
#%    y <- seq(min(my1,my2)-9,max(my1,my2)+9,l=nx)
#%    Fx <- px1*pt(x-mx1,vx1) + px2*pt(x-mx2,vx2)
#%    Fy <- py1*pt(y-my1,vy1) + py2*pt(y-my2,vy2)
#%    ROC.hh(x,Fx,y,Fy,nx=nx)
#%}
#%
#%# Assuming equally weighted normal mixtures
#%ROC.norm.mix <- function(mx1,mx2,sx1,sx2,my1,my2,sy1,sy2,nx=200,px1=0.5,px2=0.5,py1=0.5,py2=0.5)
#%{
#%    sump <- px1+px2
#%    px1 <- px1/sump
#%    px2 <- px2/sump
#%    sump <- py1+py2
#%    py1 <- py1/sump
#%    py2 <- py2/sump
#%    x <- seq(min(mx1,mx2)-5*max(sx1,sx2),max(mx1,mx2)+5*max(sx1,sx2),l=nx)
#%    y <- seq(min(my1,my2)-5*max(sy1,sy2),max(my1,my2)+5*max(sy1,sy2),l=nx)
#%    Fx <- px1*pnorm(x,mx1,sx1) + px2*pnorm(x,mx2,sx2)
#%    Fy <- py1*pnorm(y,my1,sy1) + py2*pnorm(y,my2,sy2)
#%    ROC.hh(x,Fx,y,Fy,nx=nx)
#%}    
#%
#%## CALCULATION OF ASYMPTOTIC CONFIDENCE BANDS
#%## as per Hall, Hyndman and Fan (2003b)
#%
#%ASMCONF.est <- function(x,y,alpha=0.05,ngrid=512,...)
#%{
#%    m <- length(x)
#%    n <- length(y)
#%
#%    # Get h1 and h2
#%    h1 <- h.lloyd(x)/2
#%    h2 <- h.lloyd(y)/2
#%
#%    # Get H1 and H2
#%    H1 <- (4/7/m)^{1/9}*sd(x)
#%    H2 <- (4/7/n)^{1/9}*sd(y)
#%    
#%    # Get Hf and Hg
#%    Hf <- bw.SJ(x, method="dpi")
#%    Hg <- bw.SJ(y, method="dpi")
#%
#%    # Get HF and HG
#%    HF <- h.lloyd(x)
#%    HG <- h.lloyd(y)
#%    
#%    # Get hf and hg
#%    lo <- min(min(x)-5*Hf,min(y)-5*Hg)
#%    hi <- max(max(x)+5*Hf,max(y)+5*Hg)
#%    xx <- seq(lo,hi,l=ngrid)
#%    f <- pdf.est(x,Hf,xx)$y
#%    g <- pdf.est(y,Hg,xx)$y
#%    F <- cdf.est(x,HF,xx)$y
#%    G <- cdf.est(y,HG,xx)$y
#%    f2 <- denest(x,2,H1,xgrid=xx)$y
#%    g2 <- denest(y,2,H2,xgrid=xx)$y
#%    tt <- seq(0.001,0.999,l=200)
#%    Finv <- approx(unique(F),xx[!duplicated(F)],xout=1-tt)$y
#%    Ginv <- approx(unique(G),xx[!duplicated(G)],xout=1-tt)$y
#%    kappa <- 0.5641896
#%    z <- abs(qnorm(0.5*alpha))
#%    gFinv <- approx(xx,g,xout=Finv)$y
#%    fFinv <- approx(xx,f,xout=Finv)$y
#%    GFinv <- approx(xx,G,xout=Finv)$y
#%    f2Finv <- approx(xx,f2,xout=Finv)$y
#%    g2Finv <- approx(xx,g2,xout=Finv)$y
#%    tmp <- (n/m)*(gFinv/fFinv)^2*tt*(1-tt)
#%    a <- tmp/(GFinv*(1-GFinv)+tmp)
#%    qf <- kappa*(3-a-a*z^2)+2/sqrt(2*pi)*(a+a*z^2-1)
#%    qg <- kappa*(a-1-a*z^2)
#%    temp1 <- sum(qf[!is.na(f2Finv)])/sum(f2Finv,na.rm=TRUE)
#%    temp2 <- sum(qg[!is.na(f2Finv)])/sum(g2Finv,na.rm=TRUE)
#%    hf <- ifelse(temp1<0, 2^{-1/3}, 1) *(abs(temp1))^{1/3}*m^{-1/3}
#%    hg <- ifelse(temp2<0, 2^{-1/3}, 1) *(abs(temp2))^{1/3}*n^{-1/3}
#%
#%    # Get ftilde and gtilde
#%    ft <- pdf.est(x,hf,xx)$y
#%    gt <- pdf.est(y,hg,xx)$y
#%
#%    # Get Fhat and Ghat
#%    Fhat <- cdf.est(x,h1,xx)$y
#%    Ghat <- cdf.est(y,h2,xx)$y
#%
#%    # Compute sigma^2
#%    Finv <- approx(unique(Fhat),xx[!duplicated(Fhat)],xout=1-tt)$y
#%    GFinv <- approx(xx,Ghat,xout=Finv)$y
#%    gFinv <- approx(xx,gt,xout=Finv)$y
#%    fFinv <- approx(xx,ft,xout=Finv)$y
#%    sig2 <- sqrt(1/n*GFinv*(1-GFinv) + 1/m*tt*(1-tt)*(gFinv/fFinv)^2)
#%
#%    # Compute upper and lower bounds
#%    lo <- pmax(1-GFinv - z * sig2, 0)
#%    hi <- pmax(1-GFinv + z * sig2, 0)
#%
#%    return(p=tt,Rp=1-GFinv, sigma2=sig2, lower=lo, upper=hi)
#%}

Try the ROC package in your browser

Any scripts or data that you put into this service are public.

ROC documentation built on Nov. 8, 2020, 5:23 p.m.