Nothing
# nbh_init Initalize parameters for nbh_em
# Function nbm_em (NB mixture model) is used to find alpha,
# beta, and wght (mixprop); wght (1xN) is repeated N times row-wise
# to represent the initial TRANS for the subsequent nbh_em training
# Use: nbh0 <- nbh_init(count, K)
# nbh0: list(TRANS, alpha, beta)
nbh_init <- function(count, K, NBM_NIT_MAX=250, NBM_TOL=1e-3)
{
if(missing(count)) {stop("data count is missing")}
if(missing(K)) {stop("Number of cluster K is missing")}
message(sprintf("\nStarting NB mixture model (nbm_em) for K=%d clusters:", K), appendLF=TRUE)
alpha <- tail(quantile(count[count>0], probs=seq(0, 1, 1/K)), K)
beta <- rep(1, K)
wght <- rep(0.5, K)
nbm <- nbm_em(count, alpha, beta, wght, NBM_NIT_MAX=NBM_NIT_MAX, NBM_TOL=NBM_TOL)
alpha <- nbm$alpha
beta <- nbm$beta
TRANS <- matrix(rep(nbm$wght, K), ncol=K, byrow=TRUE)
# Order the parameters s.t. they are in increasing order of mean values
# thus, the parameters for hypo- and hyper-state are always
# the first and last, respectively
myorder <- order(alpha/beta)
alpha <- alpha[myorder]
beta <- beta[myorder]
TRANS <- TRANS[myorder, myorder]
nbhInit <- list(TRANS=TRANS, alpha=alpha, beta=beta)
nbhInit
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.