Nothing
## ---- echo = FALSE------------------------------------------------------------
knitr::opts_chunk$set(
eval=FALSE
)
## -----------------------------------------------------------------------------
# if(!"RCy3" %in% installed.packages()){
# install.packages("BiocManager")
# BiocManager::install("RCy3")
# }
# library(RCy3)
#
# if(!"RColorBrewer" %in% installed.packages()){
# install.packages("RColorBrewer")
# }
# library(RColorBrewer)
## -----------------------------------------------------------------------------
# cytoscapePing()
## -----------------------------------------------------------------------------
# string.cmd = 'string disease query disease="breast cancer" cutoff=0.9 species="Homo sapiens" limit=150'
# commandsRun(string.cmd)
## -----------------------------------------------------------------------------
# string.cmd = 'string disease query disease="ovarian cancer" cutoff=0.9 species="Homo sapiens" limit=150'
# commandsRun(string.cmd)
## -----------------------------------------------------------------------------
# getNetworkList()
## -----------------------------------------------------------------------------
# layoutNetwork(layout.name='circular')
## -----------------------------------------------------------------------------
# getLayoutNames()
## -----------------------------------------------------------------------------
# getLayoutPropertyNames(layout.name='force-directed')
# layoutNetwork('force-directed defaultSpringCoefficient=0.0000008 defaultSpringLength=70')
## -----------------------------------------------------------------------------
# getTableColumnNames('node')
## -----------------------------------------------------------------------------
# disease.score.table <- getTableColumns('node','stringdb::disease score')
# disease.score.table
## -----------------------------------------------------------------------------
# par(mar=c(1,1,1,1))
# plot(factor(row.names(disease.score.table)),disease.score.table[,1], ylab=colnames(disease.score.table)[1])
# summary(disease.score.table)
## -----------------------------------------------------------------------------
# top.quart <- quantile(disease.score.table[,1], 0.75)
# top.nodes <- row.names(disease.score.table)[which(disease.score.table[,1]>top.quart)]
# createSubnetwork(top.nodes,subnetwork.name ='top disease quartile')
# #returns a Cytoscape network SUID
## -----------------------------------------------------------------------------
# createSubnetwork(edges='all',subnetwork.name='top disease quartile connected') #handy way to exclude unconnected nodes!
## -----------------------------------------------------------------------------
# setCurrentNetwork(network="String Network - ovarian cancer")
# top.nodes <- row.names(disease.score.table)[tail(order(disease.score.table[,1]),3)]
# selectNodes(nodes=top.nodes)
# selectFirstNeighbors()
# createSubnetwork('selected', subnetwork.name='top disease neighbors') # selected nodes, all connecting edges (default)
## -----------------------------------------------------------------------------
# setCurrentNetwork(network="String Network - ovarian cancer")
# selectNodes(nodes=top.nodes)
# commandsPOST('diffusion diffuse') # diffusion!
# createSubnetwork('selected',subnetwork.name = 'top disease diffusion')
# layoutNetwork('force-directed')
## -----------------------------------------------------------------------------
# load(system.file("extdata","tutorial-ovc-expr-mean-dataset.robj", package="RCy3"))
# load(system.file("extdata","tutorial-ovc-mut-dataset.robj", package="RCy3"))
# load(system.file("extdata","tutorial-brc-expr-mean-dataset.robj", package="RCy3"))
# load(system.file("extdata","tutorial-brc-mut-dataset.robj", package="RCy3"))
## -----------------------------------------------------------------------------
# str(brc.expr) # gene names in row.names of data.frame
# str(brc.mut) # gene names in column named 'Hugo_Symbol'
## -----------------------------------------------------------------------------
# setCurrentNetwork(network="String Network - breast cancer")
# layoutNetwork('force-directed') #uses same settings as previously set
## -----------------------------------------------------------------------------
# ?loadTableData
# loadTableData(brc.expr,table.key.column = "display name") #default data.frame key is row.names
# loadTableData(brc.mut,'Hugo_Symbol',table.key.column = "display name") #specify column name if not default
## -----------------------------------------------------------------------------
# style.name = "dataStyle"
# createVisualStyle(style.name)
# setVisualStyle(style.name)
#
# setNodeShapeDefault("ellipse", style.name) #remember to specify your style.name!
# setNodeSizeDefault(60, style.name)
# setNodeColorDefault("#AAAAAA", style.name)
# setEdgeLineWidthDefault(2, style.name)
# setNodeLabelMapping('display name', style.name)
## -----------------------------------------------------------------------------
# brc.expr.network = getTableColumns('node','expr.mean')
# min.brc.expr = min(brc.expr.network[,1],na.rm=TRUE)
# max.brc.expr = max(brc.expr.network[,1],na.rm=TRUE)
# data.values = c(min.brc.expr,0,max.brc.expr)
## -----------------------------------------------------------------------------
# display.brewer.all(length(data.values), colorblindFriendly=TRUE, type="div") # div,qual,seq,all
# node.colors <- c(rev(brewer.pal(length(data.values), "RdBu")))
## -----------------------------------------------------------------------------
# setNodeColorMapping('expr.mean', data.values, node.colors, style.name=style.name)
## -----------------------------------------------------------------------------
# brc.mut.network = getTableColumns('node','mut_count')
# min.brc.mut = min(brc.mut.network[,1],na.rm=TRUE)
# max.brc.mut = max(brc.mut.network[,1],na.rm=TRUE)
# data.values = c(min.brc.mut,20,max.brc.mut)
# display.brewer.all(length(data.values), colorblindFriendly=TRUE, type="seq")
# border.colors <- c(brewer.pal(3, "Reds"))
# setNodeBorderColorMapping('mut_count',data.values,border.colors,style.name=style.name)
# border.width <- c(2,4,8)
# setNodeBorderWidthMapping('mut_count',data.values,border.width,style.name=style.name)
## -----------------------------------------------------------------------------
# top.mut <- (brc.mut$Hugo_Symbol)[tail(order(brc.mut$mut_count),2)]
# top.mut
# selectNodes(nodes=top.mut,'display name')
# commandsPOST('diffusion diffuse')
# createSubnetwork('selected',subnetwork.name = 'top mutated diffusion')
# layoutNetwork('force-directed')
## -----------------------------------------------------------------------------
# setCurrentNetwork(network="String Network - ovarian cancer")
# clearSelection()
# str(ovc.expr) # gene names in row.names of data.frame
# str(ovc.mut) # gene names in column named 'Hugo_Symbol'
#
# loadTableData(ovc.expr, table.key.column = 'display name')
# loadTableData(ovc.mut,'Hugo_Symbol', table.key.column = 'display name')
## -----------------------------------------------------------------------------
# setVisualStyle(style.name=style.name)
## -----------------------------------------------------------------------------
# saveSession('tutorial_session') #.cys
## -----------------------------------------------------------------------------
# exportImage(filename='tutorial_image2', type = 'PDF') #.pdf
# ?exportImage
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.