Nothing
## ----style, eval=TRUE, echo=FALSE, results="asis"--------------------------
BiocStyle::latex()
## ----install, eval = FALSE-------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("OmicsMarkeR")
## ----datagen---------------------------------------------------------------
library("OmicsMarkeR")
set.seed(123)
dat.discr <- create.discr.matrix(
create.corr.matrix(
create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),
D = 10
)
## ----fs.stability----------------------------------------------------------
vars <- dat.discr$discr.mat
groups <- dat.discr$classes
fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')
## ----performance-----------------------------------------------------------
performance.metrics(fits)
fits$RPT
## ----feature.table---------------------------------------------------------
feature.table(fits, "plsda")
## ----predictClasses, eval=FALSE--------------------------------------------
#
# # create some 'new' data
# newdata <- create.discr.matrix(
# create.corr.matrix(
# create.random.matrix(nvar = 50,
# nsamp = 100,
# st.dev = 1,
# perturb = 0.2)),
# D = 10
# )$discr.mat
#
# # original data combined to a data.frame
# orig.df <- data.frame(vars, groups)
#
# # see what the PLSDA predicts for the new data
# # NOTE, newdata does not require a .classes column
# predictNewClasses(fits, "plsda", orig.df, newdata)
## ----ensemble, eval=FALSE--------------------------------------------------
# fits <- fs.ensembl.stability(vars,
# groups,
# method = c("plsda", "rf"),
# f = 10,
# k = 3,
# k.folds = 10,
# verbose = 'none')
## ----aggregation-----------------------------------------------------------
# test data
ranks <- replicate(5, sample(seq(50), 50))
row.names(ranks) <- paste0("V", seq(50))
head(aggregation(ranks, "CLA"))
## ----grid, eval=FALSE------------------------------------------------------
# # requires data.frame of variables and classes
# plsda <- denovo.grid(orig.df, "plsda", 3)
# rf <- denovo.grid(orig.df, "rf", 5)
#
# # create grid list
# # Make sure to assign appropriate model names
# grid <- list(plsda=plsda, rf=rf)
#
# # pass to fs.stability or fs.ensemble.stability
# fits <- fs.stability(vars,
# groups,
# method = c("plsda", "rf"),
# f = 10,
# k = 3,
# k.folds = 10,
# verbose = 'none',
# grid = grid)
#
## ----metabs----------------------------------------------------------------
metabs <- paste("Metabolite", seq(20), sep="_")
## ----samples---------------------------------------------------------------
set.seed(13)
run1 <- sample(metabs, 10)
run2 <- sample(metabs, 10)
## ----jaccard---------------------------------------------------------------
jaccard(run1, run2)
## ----kuncheva--------------------------------------------------------------
# In this case, 20 original variables
kuncheva(run1, run2, 20)
## ----repeat.metabs---------------------------------------------------------
set.seed(21)
# matrix of Metabolites identified (e.g. 5 trials)
features <- replicate(5, sample(metabs, 10))
## ----pairwise.stability----------------------------------------------------
pairwise.stability(features, "sorensen")
## ----model.stability-------------------------------------------------------
set.seed(999)
plsda <-
replicate(5, paste("Metabolite", sample(metabs, 10), sep="_"))
rf <-
replicate(5, paste("Metabolite", sample(metabs, 10), sep="_"))
features <- list(plsda=plsda, rf=rf)
# nc may be omitted unless using kuncheva
pairwise.model.stability(features, "kuncheva", nc=20)
## ----permutations, eval=FALSE----------------------------------------------
# # permuate class
# perm.class(fits, vars, groups, "rf", k.folds=5,
# metric="Accuracy", nperm=10)
#
#
# # permute variables/features
# perm.features(fits, vars, groups, "rf",
# sig.level = .05, nperm = 10)
## ----doMC, eval=FALSE------------------------------------------------------
# library(doMC)
#
# n <- detectCores()
# registerDoMC(n)
## ----SNOW, eval=FALSE------------------------------------------------------
# library(parallel)
# library(doSNOW)
#
# # get number of cores
# n <- detectCores()
#
# # make clusters
# cl <- makeCluster(n)
#
# # register backend
# registerDoSNOW(cl)
## ----sessionInfo-----------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.