Nothing
#' Plot the main indel contexts
#'
#' @details
#' Plots the number of indels per main COSMIC context per sample.
#' The contexts are not subdivided into the number of repeats/microhomology length.
#' It takes a tibble with counts as its input. This tibble can be generated by count_indel_contexts
#' Each sample is plotted in a separate facet.
#' The same y axis can be used for all samples or a separate y axis can be used.
#'
#' @param counts A tibble containing the number of indels per COSMIC context.
#' @param same_y A boolean describing whether the same y axis should be used for all samples.
#'
#' @return A ggplot figure.
#'
#' @examples
#' ## Get The indel counts
#' ## See 'count_indel_contexts()' for more info on how to do this.
#' indel_counts <- readRDS(system.file("states/blood_indel_counts.rds",
#' package = "MutationalPatterns"
#' ))
#'
#' ## Plot contexts
#' plot_main_indel_contexts(indel_counts)
#'
#' ## Use the same y axis for all samples.
#' plot_main_indel_contexts(indel_counts, same_y = TRUE)
#' @import ggplot2
#' @importFrom magrittr %>%
#' @family Indels
#'
#' @seealso \code{\link{count_indel_contexts}}, \code{\link{plot_indel_contexts}}
#'
#' @export
plot_main_indel_contexts <- function(counts, same_y = FALSE) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
count <- muttype <- muttype_sub <- muttype_total <- NULL
# Turn matrix into tibble
counts <- counts %>%
as.data.frame() %>%
tibble::rownames_to_column("muttype_total") %>%
tidyr::separate(muttype_total,
c("muttype", "muttype_sub"),
sep = "_(?=[0-9])"
) %>%
dplyr::mutate(muttype = factor(muttype, levels = unique(muttype)))
# Summarise per muttype and make data long
counts_main <- counts %>%
dplyr::select(-muttype_sub) %>%
dplyr::group_by(muttype) %>%
dplyr::summarise_all(list(~ sum(.))) %>%
tidyr::gather(key = "sample", value = "count", -.data$muttype) %>%
dplyr::mutate(sample = factor(sample, levels = unique(sample)))
# Count nr mutations. (This is used for the facets)
nr_muts <- counts_main %>%
dplyr::group_by(sample) %>%
dplyr::summarise(nr_muts = sum(count))
# Create facet text
facet_labs_y <- stringr::str_c(nr_muts$sample, " (n = ", nr_muts$nr_muts, ")")
names(facet_labs_y) <- nr_muts$sample
# Set plotting parameters
colors <- c(
"#FDBE6F", "#FF8001", "#B0DD8B", "#36A12E", "#FDCAB5", "#FC8A6A",
"#F14432", "#BC141A", "#D0E1F2", "#94C4DF", "#4A98C9", "#1764AB",
"#E2E2EF", "#B6B6D8", "#8683BD", "#61409B"
)
if (same_y) {
facet_scale <- "free_x"
} else {
facet_scale <- "free"
}
# Create figure
fig <- ggplot(counts_main, aes(x = muttype, y = count, fill = muttype)) +
geom_bar(stat = "identity") +
facet_grid(sample ~ ., labeller = labeller(sample = facet_labs_y), scales = facet_scale) +
labs(x = "", y = "Nr of indels") +
scale_fill_manual(guide = FALSE, values = colors) +
theme_bw() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.y = element_blank(),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)
)
return(fig)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.