Nothing
#' Plot the DBS contexts
#'
#' @details
#' Plots the number of DBS COSMIC context per sample.
#' It takes a tibble with counts as its input. This tibble can be generated by count_dbs_contexts
#' Each sample is plotted in a separate facet.
#' The same y axis can be used for all samples or a separate y axis can be used.
#'
#' @param counts A tibble containing the number of DBS per COSMIC context.
#' @param same_y A boolean describing whether the same y axis should be used for all samples.
#' @param condensed More condensed plotting format. Default = F.
#'
#' @return A ggplot figure.
#'
#' @examples
#' ## Get The dbs counts
#' ## See 'count_dbs_contexts()' for more info on how to do this.
#' dbs_counts <- readRDS(system.file("states/blood_dbs_counts.rds",
#' package = "MutationalPatterns"
#' ))
#'
#' ## Plot contexts
#' plot_dbs_contexts(dbs_counts)
#'
#' ## Use the same y axis for all samples.
#' plot_dbs_contexts(dbs_counts, same_y = TRUE)
#'
#' ## Create a more condensed plot
#' plot_dbs_contexts(dbs_counts, condensed = TRUE)
#' @import ggplot2
#' @importFrom magrittr %>%
#' @family DBS
#'
#' @seealso \code{\link{count_dbs_contexts}}, \code{\link{plot_main_dbs_contexts}}
#'
#' @export
plot_dbs_contexts <- function(counts, same_y = FALSE, condensed = FALSE) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
count <- REF <- ALT <- muttype_total <- sample <- NULL
# Transform to data frame
counts <- counts %>%
as.data.frame() %>%
tibble::rownames_to_column("muttype_total") %>%
tidyr::separate(muttype_total, c("REF", "ALT"), sep = "_") %>%
dplyr::mutate(REF = factor(REF, levels = BiocGenerics::unique(REF)))
# Set levels of ALT
bases <- c("A", "C", "G", "T")
bases1 <- bases
bases_combi <- tidyr::crossing(bases, bases1)
counts$ALT <- factor(counts$ALT, levels = stringr::str_c(bases_combi$bases, bases_combi$bases1))
# Transform data to long format.
counts <- counts %>%
tidyr::gather(key = "sample", value = "count", -REF, -ALT) %>%
dplyr::mutate(sample = factor(sample, levels = unique(sample)))
# Count nr of mutations
nr_muts <- counts %>%
dplyr::group_by(sample) %>%
dplyr::summarise(nr_muts = round(sum(count)))
if (same_y) {
facet_scale <- "free_x"
} else {
facet_scale <- "free"
}
# Create facet labs
facet_labs_y <- stringr::str_c(nr_muts$sample, " (n = ", nr_muts$nr_muts, ")")
names(facet_labs_y) <- nr_muts$sample
facet_labs_x <- stringr::str_c(levels(counts$REF), ">NN")
names(facet_labs_x) <- levels(counts$REF)
# Change plotting parameters based on whether plot should be condensed.
if (condensed == TRUE) {
width <- 1
spacing <- 0
} else {
width <- 0.6
spacing <- 0.5
}
# Set colours
colors <- c(
"#A6CEE3", "#1F78B4", "#B2DF8A", "#33A02C", "#FB9A99",
"#E31A1C", "#FDBF6F", "#FF7F00", "#CAB2D6", "#6A3D9A"
)
# Create plot
fig <- ggplot(counts, aes(x = ALT, y = count, fill = REF, width = width)) +
geom_bar(stat = "identity") +
facet_grid(sample ~ REF,
scales = facet_scale,
space = "free_x",
labeller = labeller(REF = facet_labs_x, sample = facet_labs_y)
) +
scale_fill_manual(guide = FALSE, values = colors) +
labs(fill = "Mutation type", title = "", y = "Nr of DBSs", x = "") +
theme_bw() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.spacing.x = unit(spacing, "lines"),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)
)
return(fig)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.