Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(dpi = 300)
knitr::opts_chunk$set(cache=FALSE)
## ---- echo = FALSE,hide=TRUE, message=FALSE,warning=FALSE---------------------
devtools::load_all(".")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
library(png)
library(grid)
img <- readPNG("Moonlight_Pipeline.png")
grid.raster(img)
## ---- eval = FALSE------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("MoonlightR")
## ---- eval = FALSE------------------------------------------------------------
# dataFilt <- getDataTCGA(cancerType = "LUAD",
# dataType = "Gene expression",
# directory = "data",
# nSample = 4)
## ---- eval = FALSE------------------------------------------------------------
# dataFilt <- getDataTCGA(cancerType = "BRCA",
# dataType = "Methylation",
# directory = "data",nSample = 4)
## ---- eval = TRUE, echo = TRUE------------------------------------------------
knitr::kable(GEO_TCGAtab, digits = 2,
caption = "Table with GEO data set matched to one
of the 18 given TCGA cancer types ",
row.names = TRUE)
## ---- eval = FALSE , echo = TRUE, results='hide', warning = FALSE, message = FALSE----
# dataFilt <- getDataGEO(GEOobject = "GSE20347",platform = "GPL571")
## ---- eval = FALSE, echo = TRUE, results='hide', warning = FALSE, message = FALSE----
# dataFilt <- getDataGEO(TCGAtumor = "ESCA")
## ---- eval = FALSE, message=FALSE, results='hide', warning=FALSE--------------
# dataDEGs <- DPA(dataFilt = dataFilt,
# dataType = "Gene expression")
## ---- eval = FALSE, echo = TRUE, hide=TRUE, results='hide', warning = FALSE, message = FALSE----
# data(GEO_TCGAtab)
# DataAnalysisGEO<- "../GEO_dataset/"
# i<-5
#
# cancer <- GEO_TCGAtab$Cancer[i]
# cancerGEO <- GEO_TCGAtab$Dataset[i]
# cancerPLT <-GEO_TCGAtab$Platform[i]
# fileCancerGEO <- paste0(cancer,"_GEO_",cancerGEO,"_",cancerPLT, ".RData")
#
# dataFilt <- getDataGEO(TCGAtumor = cancer)
# xContrast <- c("G1-G0")
# GEOdegs <- DPA(dataConsortium = "GEO",
# gset = dataFilt ,
# colDescription = "title",
# samplesType = c(GEO_TCGAtab$GEO_Normal[i],
# GEO_TCGAtab$GEO_Tumor[i]),
# fdr.cut = 0.01,
# logFC.cut = 1,
# gsetFile = paste0(DataAnalysisGEO,fileCancerGEO))
## ---- eval = TRUE, echo = TRUE------------------------------------------------
library(TCGAbiolinks)
TCGAVisualize_volcano(DEGsmatrix$logFC, DEGsmatrix$FDR,
filename = "DEGs_volcano.png",
x.cut = 1,
y.cut = 0.05,
names = rownames(DEGsmatrix),
color = c("black","red","dodgerblue3"),
names.size = 2,
show.names = "highlighted",
highlight = c("gene1","gene2"),
xlab = " Gene expression fold change (Log2)",
legend = "State",
title = "Volcano plot (Normal NT vs Tumor TP)",
width = 10)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
img <- readPNG("DEGs_volcano.png")
grid.raster(img)
## ---- eval = TRUE, echo = TRUE, results='hide'--------------------------------
data(DEGsmatrix)
dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
## ---- eval = TRUE, echo = TRUE, message=FALSE, results='hide', warning=FALSE----
plotFEA(dataFEA = dataFEA, additionalFilename = "_exampleVignette", height = 20, width = 10)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
img <- readPNG("FEAplot.png")
grid.raster(img)
## ---- eval = TRUE-------------------------------------------------------------
dataGRN <- GRN(TFs = rownames(DEGsmatrix)[1:100], normCounts = dataFilt,
nGenesPerm = 10,kNearest = 3,nBoot = 10)
## ---- eval = FALSE, echo = TRUE, results='hide'-------------------------------
# data(dataGRN)
# data(DEGsmatrix)
#
# dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
#
# BPselected <- dataFEA$Diseases.or.Functions.Annotation[1:5]
# dataURA <- URA(dataGRN = dataGRN,
# DEGsmatrix = DEGsmatrix,
# BPname = BPselected,
# nCores=1)
## ---- eval = TRUE-------------------------------------------------------------
data(dataURA)
dataDual <- PRA(dataURA = dataURA,
BPname = c("apoptosis","proliferation of cells"),
thres.role = 0)
## ---- eval = TRUE, echo = TRUE, results='hide', warning = FALSE, message = FALSE----
data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN, knownDriverGenes, 0.55)
## ----eval = FALSE,echo=TRUE,message=FALSE,warning=FALSE, results='hide'-------
# dataDEGs <- DPA(dataFilt = dataFilt,
# dataType = "Gene expression")
#
# dataFEA <- FEA(DEGsmatrix = dataDEGs)
#
# dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
# DEGsmatrix = dataDEGs,
# DiffGenes = TRUE,
# normCounts = dataFilt)
#
# dataURA <- URA(dataGRN = dataGRN,
# DEGsmatrix = dataDEGs,
# BPname = c("apoptosis",
# "proliferation of cells"))
#
# dataDual <- PRA(dataURA = dataURA,
# BPname = c("apoptosis",
# "proliferation of cells"),
# thres.role = 0)
#
# CancerGenes <- list("TSG"=names(dataDual$TSG), "OCG"=names(dataDual$OCG))
#
## ---- eval = TRUE,message=FALSE,warning=FALSE, results='hide'-----------------
plotURA(dataURA = dataURA[c(names(dataDual$TSG), names(dataDual$OCG)),, drop = FALSE], additionalFilename = "_exampleVignette")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
img <- readPNG("URAplot.png")
grid.raster(img)
## ----eval = FALSE,echo=TRUE,message=FALSE,warning=FALSE-----------------------
# cancerList <- c("BLCA","COAD","ESCA","HNSC","STAD")
#
# listMoonlight <- moonlight(cancerType = cancerList,
# dataType = "Gene expression",
# directory = "data",
# nSample = 10,
# nTF = 100,
# DiffGenes = TRUE,
# BPname = c("apoptosis","proliferation of cells"))
# save(listMoonlight, file = paste0("listMoonlight_ncancer4.Rdata"))
#
## ---- eval = TRUE, echo = TRUE, results='hide', warning = FALSE, message = FALSE----
plotCircos(listMoonlight = listMoonlight, additionalFilename = "_ncancer5")
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
img <- readPNG("circos_ocg_tsg_ncancer5.png")
grid.raster(img)
## ----eval = FALSE,echo=TRUE,message=FALSE,warning=FALSE-----------------------
#
# listMoonlight <- NULL
# for (i in 1:4){
# dataDual <- moonlight(cancerType = "BRCA",
# dataType = "Gene expression",
# directory = "data",
# nSample = 10,
# nTF = 5,
# DiffGenes = TRUE,
# BPname = c("apoptosis","proliferation of cells"),
# stage = i)
# listMoonlight <- c(listMoonlight, list(dataDual))
# save(dataDual, file = paste0("dataDual_stage",as.roman(i), ".Rdata"))
# }
# names(listMoonlight) <- c("stage1", "stage2", "stage3", "stage4")
#
# # Prepare mutation data for stages
#
# mutation <- GDCquery_Maf(tumor = "BRCA")
#
# res.mutation <- NULL
# for(stage in 1:4){
#
# curStage <- paste0("Stage ", as.roman(stage))
# dataClin$tumor_stage <- toupper(dataClin$tumor_stage)
# dataClin$tumor_stage <- gsub("[ABCDEFGH]","",dataClin$tumor_stage)
# dataClin$tumor_stage <- gsub("ST","Stage",dataClin$tumor_stage)
#
# dataStg <- dataClin[dataClin$tumor_stage %in% curStage,]
# message(paste(curStage, "with", nrow(dataStg), "samples"))
# dataSmTP <- mutation$Tumor_Sample_Barcode
#
# dataStgC <- dataSmTP[substr(dataSmTP,1,12) %in% dataStg$bcr_patient_barcode]
# dataSmTP <- dataStgC
#
# info.mutation <- mutation[mutation$Tumor_Sample_Barcode %in% dataSmTP,]
#
# ind <- which(info.mutation[,"Consequence"]=="inframe_deletion")
# ind2 <- which(info.mutation[,"Consequence"]=="inframe_insertion")
# ind3 <- which(info.mutation[,"Consequence"]=="missense_variant")
# res.mutation <- c(res.mutation, list(info.mutation[c(ind, ind2, ind3),c(1,51)]))
# }
# names(res.mutation) <- c("stage1", "stage2", "stage3", "stage4")
#
#
# tmp <- NULL
# tmp <- c(tmp, list(listMoonlight[[1]][[1]]))
# tmp <- c(tmp, list(listMoonlight[[2]][[1]]))
# tmp <- c(tmp, list(listMoonlight[[3]][[1]]))
# tmp <- c(tmp, list(listMoonlight[[4]][[1]]))
# names(tmp) <- names(listMoonlight)
#
# mutation <- GDCquery_Maf(tumor = "BRCA")
#
# plotCircos(listMoonlight=listMoonlight,listMutation=res.mutation, additionalFilename="proc2_wmutation", intensityColDual=0.2,fontSize = 2)
## ---- fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE----
img <- readPNG("circos_ocg_tsg_stages.png")
grid.raster(img)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.