R/create_triplet_regulon_based.R

Defines functions create_triplet_regulon_based

Documented in create_triplet_regulon_based

#' @title Map TF and target genes using regulon databases or
#' any user provided target-tf. Maps
#' TF to the DNAm region with TFBS using JASPAR2020 TFBS.
#' @description This function wraps two other functions
#' \code{get_region_target_gene} and \code{get_tf_in_region} from the package.
#'
#' @importFrom tidyr separate
#' @importFrom GenomicRanges makeGRangesFromDataFrame
#' @param region A Granges or a named vector with
#' regions (i.e "chr21:100002-1004000")
#' @param genome Human genome reference "hg38" or "hg19"
#' @param regulons.min.confidence Minimun confidence score
#' ("A", "B","C","D", "E") classifying regulons based on
#' their quality from Human DoRothEA database
#'  \link[dorothea]{dorothea_hs}. The default minimun confidence score is "B".
#' @param motif.search.window.size Integer value to extend the regions.
#' For example, a value of 50 will
#' extend 25 bp upstream and 25 downstream the region. Default is no increase
#' @param motif.search.p.cutoff motifmatchr pvalue cut-off. Default 1e-8.
#' @param TF.peaks.gr  A granges with TF peaks to be overlaped with input region
#' Metadata column expected "id" with TF name. Default NULL. Note that Remap catalog
#' can be used as shown in the examples.
#' @param cores Number of CPU cores to be used. Default 1.
#' @param tf.target A dataframe with tf and target columns. If not provided,
#' \link[dorothea]{dorothea_hs} will be used.
#' @param max.distance.region.target Max distance between region and target gene.
#' Default 1Mbp.
#' @return A data frame with TF, target and RegionID information.
#' @examples
#' triplet <- create_triplet_regulon_based(
#'    region = c("chr1:69591-69592", "chr1:898803-898804"),
#'    motif.search.window.size = 50,
#'    regulons.min.confidence = "B",
#'      motif.search.p.cutoff = 0.05
#' )
#' @importFrom SummarizedExperiment rowRanges
#' @export
create_triplet_regulon_based <- function(
    region,
    genome = c("hg38","hg19"),
    regulons.min.confidence = "B",
    motif.search.window.size = 0,
    motif.search.p.cutoff = 1e-8,
    cores = 1,
    tf.target,
    TF.peaks.gr = NULL,
    max.distance.region.target = 10^6
){

    regulons.min.confidence <- match.arg(
        arg = regulons.min.confidence,
        choices =   c("A", "B", "C", "D", "E")
    )

    genome <- match.arg(genome)

    if (is(region, "character") | is(region, "factor")) {
        region.gr <- make_granges_from_names(region)
        region.names <- region
    } else if (is(region, "GenomicRanges")) {
        region.gr <- region
        region.names <- make_names_from_granges(region.gr)
    } else if (is(region, "SummarizedExperiment")) {
        region.gr <- rowRanges(region)
        region.names <- make_names_from_granges(region.gr)
    }

    message("Mapping target and TF genes")
    if (missing(tf.target)) {
        tf.target <- get_regulon_dorothea(
            min.confidence = regulons.min.confidence
        )
    } else {
        # check regulons input data
        cols <- c("tf", "target")
        if (!all(cols %in% colnames(tf.target))) {
            stop("regulons must have columns tf and target")
        }
        tf.target$tf_ensg <- map_symbol_to_ensg(tf.target$tf)
        tf.target$target_ensg <- map_symbol_to_ensg(tf.target$target)
    }

    tf.target$target_name <- tf.target$target
    tf.target$target <- tf.target$target_ensg
    tf.target$TF <- tf.target$tf_ensg

    message("Looking for TFBS")
    region.tf <- get_tf_in_region(
        region = region.gr,
        genome = genome,
        window.size = motif.search.window.size,
        p.cutoff = motif.search.p.cutoff,
        cores = cores,
        TF.peaks.gr = TF.peaks.gr
    )
    triplet <- dplyr::inner_join(tf.target, region.tf)

    if (nrow(triplet) == 0) {
        stop("No triplets found")
    }

    triplet <- get_distance_region_target(triplet, genome = genome)
    triplet$target_tss_pos_in_relation_to_region <- NULL
    triplet$region_pos_in_relation_to_gene_tss <- NULL


    message("Removing regions and target genes from different chromosomes")
    triplet <- triplet %>% dplyr::filter(!is.na(.data$distance_region_target_tss))

    message("Removing regions and target genes with ditance higher than ", max.distance.region.target, " bp")
    triplet <- triplet %>% dplyr::filter(abs(.data$distance_region_target_tss) < max.distance.region.target)

    # removing cols from output
    triplet$mor <- NULL
    triplet$target_ensg <- NULL
    triplet$tf_ensg <- NULL
    triplet$tf <- NULL

    triplet <- triplet %>%
        dplyr::rename(target_symbol = .data$target_name) %>%
        dplyr::relocate(.data$regionID, .before = dplyr::everything()) %>%
        dplyr::relocate(.data$target_symbol, .after = .data$regionID) %>%
        dplyr::relocate(.data$target, .after = .data$target_symbol) %>%
        dplyr::relocate(.data$TF_symbol, .after = .data$target) %>%
        dplyr::relocate(.data$TF, .after = .data$TF_symbol) %>%
        dplyr::relocate(.data$distance_region_target_tss, .after = dplyr::last_col())  %>%
        dplyr::relocate(contains("pos"), .after = dplyr::last_col())

    return(triplet)
}

Try the MethReg package in your browser

Any scripts or data that you put into this service are public.

MethReg documentation built on Nov. 8, 2020, 8:01 p.m.