MetNet contains functionality to infer metabolic network topologies from quantitative data and high-resolution mass/charge information. Using statistical models (including correlation, mutual information, regression and Bayes statistics) and quantitative data (intensity values of features) adjacency matrices are inferred that can be combined to a consensus matrix. Mass differences calculated between mass/charge values of features will be matched against a data frame of supplied mass/charge differences referring to transformations of enzymatic activities. In a third step, the two matrices are combined to form a adjacency matrix inferred from both quantitative and structure information.
Package details |
|
---|---|
Author | Thomas Naake [aut, cre] |
Bioconductor views | ImmunoOncology MassSpectrometry Metabolomics Network Regression |
Maintainer | Thomas Naake <thomasnaake@googlemail.com> |
License | GPL (>= 3) |
Version | 1.8.0 |
Package repository | View on Bioconductor |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.