Nothing
###################################################################################
# Function PermutationTest() obtains a p-value of significance from a permutation #
# test of Dfull. Uses MantelCorr(). #
# #
# Input Parameters: #
# 1) Dfull (distance matrix using all p variables) #
# 2) Dsubsets (individual cluster distance matrices) #
# 3) number of permutations #
# 4) number of samples (chips) #
# 5) desired alpha-level of significance #
# #
# Returns to the end user: #
# 1) permuted p-value for the alpha-chosen level of significance #
# #
# Date: August 12, 2005 #
# written by: Brian Steinmeyer #
###################################################################################
## permute rows and columns "num.permute" times
## to destroy the dependent nature of Dfull
## for each permutation, recalculate the mantel correlation
## of "Dfull" with each cluster's distance matrix, and
## retain the maximum Mantel correlation
PermutationTest <- function(Dfull, Dsubsets, num.per, num.chips, alpha)
{
mantel <- function(a, b) cor(a,b)
permute <- NULL
for (i in 1:num.per)
{
distmat <- as.matrix(Dfull)
x <- sample(1:num.chips)
distmat <- as.dist(distmat[x,x])
permute <- cbind(permute, max(abs(as.numeric(lapply(Dsubsets, mantel, distmat)))))
}
cut.value1 <- quantile(as.vector(permute), probs = (1 - alpha))
return(cut.value1)
}
## select the "alpha" percentile from the empirical distribution
## of the maximum Mantel correlations found in the permutation
## test as the critical value for determining cluster significance.
## return its value to the end user
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.