Nothing
######################### TEST MWASTools ###################################
library(RUnit)
## Load data
data(metabo_SE)
data(targetMetabo_SE)
#### Test MWAS_stats ####
## Test for association between diabetes and target_metabolites
T2D_model1 = MWAS_stats (targetMetabo_SE, disease_id = "T2D",
assoc_method = "logistic", mt_method = "BH",
output = "pvalues")
T2D_model2 = MWAS_stats (targetMetabo_SE, disease_id = "T2D",
assoc_method = "logistic", mt_method = "BY",
output = "pvalues")
T2D_model3 = MWAS_stats (targetMetabo_SE, disease_id = "T2D",
assoc_method = "logistic", mt_method = "bonferroni",
output = "pvalues")
T2D_model4 = MWAS_stats (targetMetabo_SE, disease_id = "T2D",
assoc_method = "logistic", mt_method = "none",
output = "pvalues")
## Test for association between diabetes and target_metabolites (age & gender adjusted)
T2D_model5 = MWAS_stats (targetMetabo_SE, disease_id = "T2D",
confounder_ids = c("Age", "Gender"),
assoc_method = "logistic", mt_method = "BH",
output = "pvalues")
## Test for association between BMI and target_metabolites
BMI_model1 = MWAS_stats (targetMetabo_SE, disease_id = "BMI",
assoc_method = "spearman", mt_method = "BH",
output = "pvalues")
## Test for association between BMI and target_metabolites (age & gender adjusted)
BMI_model2 = MWAS_stats (targetMetabo_SE, disease_id = "BMI",
confounder_ids = c("Age", "Gender"),
assoc_method = "spearman", mt_method = "BH",
output = "pvalues")
## Test for association between BMI and target_metabolites (output = models)
BMI_model3 = MWAS_stats (targetMetabo_SE, disease_id = "BMI",
confounder_ids = c("Age", "Gender"),
assoc_method = "spearman", mt_method = "BH",
output = "models")
## Attempt to do logistic regression with a non-binary predictive variable
BMI_model4 = try(MWAS_stats (targetMetabo_SE, disease_id = "BMI",
assoc_method = "logistic"), silent = TRUE)
## Attempto to apply MWAS_stats with invalid assoc_method
BMI_model5 = try(MWAS_stats (targetMetabo_SE, disease_id = "BMI", assoc_method = "X"),
silent = TRUE)
## Attempto to apply MWAS_stats with invalid assoc_method
BMI_model6 = try(MWAS_stats (targetMetabo_SE, disease_id = "BMI", assoc_method = "spearman",
mt_method = "X"), silent = TRUE)
## Tests
test.MWAS_stats <- function() {
checkTrue(is.matrix(T2D_model1))
checkTrue(is.matrix(T2D_model2))
checkTrue(is.matrix(T2D_model3))
checkTrue(is.matrix(T2D_model4))
checkTrue(is.matrix(T2D_model5))
checkTrue(is.matrix(BMI_model1))
checkTrue(is.matrix(BMI_model2))
checkTrue(is.list(BMI_model3))
checkException(BMI_model4)
checkException(BMI_model5)
checkException(BMI_model6)
}
test.MWAS_stats()
################################################################################
#### Test QC_CV ####
metabo_CV = QC_CV (metabo_SE)
## Tests
test.metabo_CV <- function() {
checkTrue(is.vector(metabo_CV))
}
test.metabo_CV()
################################################################################
#### Test QC_PCA ####
PCA_model = QC_PCA (targetMetabo_SE)
## Tests
test.PCA_model <- function() {
checkTrue(is.list(PCA_model))
}
test.PCA_model()
################################################################################
#### Test MWAS_filter ####
## Test for association between diabetes and target_metabolites
T2D_model1 <- MWAS_stats (targetMetabo_SE, disease_id = "T2D",
assoc_method = "logistic")
## Filter T2D_model1 by pvalue
pvalue_filter1 <- MWAS_filter(T2D_model1, type = "pvalue", alpha_th = 0.001)
## Attempt to filter T2D_model1 with too stringent criteria
pvalue_filter2 <- try(MWAS_filter(T2D_model1, type = "pvalue", alpha_th = 0), silent = TRUE)
## Tests
test.MWAS_filter <- function() {
checkTrue(is.matrix(pvalue_filter1))
checkException(pvalue_filter2)
}
test.MWAS_filter()
################################################################################
#### Test CV_filter ####
## Calculate CVs
CV_metabo <- QC_CV (metabo_SE)
## Filter metabolic_data by CV
metabo_CVfiltered <- CV_filter(metabo_SE, CV_metabo, CV_th = 0.30)
metabo_CVfiltered2 <- CV_filter(metabo_SE, CV_metabo, CV_th = 0.15)
## Tests
test.CV_filter <- function() {
checkTrue(nrow(metabo_SE) > nrow(metabo_CVfiltered))
checkTrue(nrow(metabo_CVfiltered) > nrow(metabo_CVfiltered2))
}
test.CV_filter()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.