Nothing
#' The training set from a study for subjects with ovarian cancer
#'
#' It is a protein abundance data matrix,
#' where rows are proteins and columns are samples.
#' It includes log2 protein intensities for 67 proteins
#' among 173 biological subjects from control and cancer groups.
#' It is the input for estimateVar and simulateDataset function,
#' with annotation file. It should be prepared by users.
#'
#' @references Huttenhain R and Choi M et al. (2019).
#' A targeted mass spectrometry strategy for developing proteomic biomarkers:
#' a case study of epithelial ovarian cancer.
#' Mol Cell Proteomics 18(9):1836-1850.
#' doi:10.1074/mcp.RA118.001221.
#' @format A numeric matrix with 67 rows and 173 columns.
#' @examples
#' head(OV_SRM_train)
#'
"OV_SRM_train"
#' Annotation file for \code{\link{OV_SRM_train}},
#'
#' Annotation of example data, \code{\link{OV_SRM_train}}, in this package.
#' It should be prepared by users. The variables are as follows:
#'
#' \itemize{
#' \item BioReplicate : Unique ID for biological subject.
#' It should be the same as the column names of \code{\link{OV_SRM_train}}
#' \item Condition : Condition for BioReplicate (ex. Healthy, Cancer, Time0)
#' }
#'
#' @references Huttenhain R and Choi M et al. (2019).
#' A targeted mass spectrometry strategy for developing proteomic biomarkers:
#' a case study of epithelial ovarian cancer.
#' Mol Cell Proteomics 18(9):1836-1850.
#' doi:10.1074/mcp.RA118.001221.
#' @format A data frame with 173 rows and 2 variables.
#' @examples
#' head(OV_SRM_train_annotation)
#'
"OV_SRM_train_annotation"
#' Example of output from estimateVar function
#'
#' It is the output of \code{\link{estimateVar}} function with two inputs:
#' \code{\link{OV_SRM_train}} and \code{\link{OV_SRM_train_annotation}}.
#' The list should include the required elements as below.
#'
#' \itemize{
#' \item model : the list of linear models trained for each protein.
#' \item mu : the mean abundance matrix of each protein in each condition
#' \item sigma : the standard deviation matrix of each protein
#' in each condition
#' \item promean: the mean abundance vector of each protein
#' across all the samples.
#' \item protein : proteins, correpsonding to the rows
#' in \emph{mu} and \emph{sigma} or the element of \emph{promean}
#' }
#'
#' @format A list with five elements
#' @examples
#' head(variance_estimation$mu)
#' head(variance_estimation$sigma)
#' head(variance_estimation$promean)
#'
"variance_estimation"
#' Example of output from simulateDataset function
#'
#' It is the output of \code{\link{simulateDataset}} function with two inputs:
#' \code{\link{OV_SRM_train}} and \code{\link{OV_SRM_train_annotation}}.
#' The list should include the required elements as below.
#'
#' \itemize{
#' \item num_proteins : the number of simulated proteins
#' \item num_samples : a vector with the number of simulated samples
#' in each condition
#' \item simulation_train_Xs : the list of simulated protein abundance matrices.
#' Each element of the list represents one simulation
#' \item simulation_train_Ys : the list of simulated condition vectors(simulation_train_Xs).
#' Each element of the list represents one simulation
#' \item input_X : the input protein abundance matrix `OV_SRM_train'.
#' \item input_Y : is the condition vector for the input `OV_SRM_train'.
#' \item valid_X: the validation protein abundance matrix, which is used for classification
#' \item valid_Y : the condition vector of validation samples (valid_X)
#' }
#'
#' @format A list with eight elements
#' @examples
#' simulated_datasets$num_proteins
#' simulated_datasets$num_samples
#' head(simulated_datasets$simulation_train_Xs[[1]])
#' head(simulated_datasets$simulation_train_Ys[[1]])
#'
"simulated_datasets"
#' Example of output from designSampleSizeClassification function
#'
#' It is the output of \code{\link{designSampleSizeClassification}} function
#' with a list of \code{\link{simulated_datasets}}
#' generated under same protein number and sample size.
#' The list should include the required elements as below.
#'
#' \itemize{
#' \item num_proteins : the number of simulated proteins
#' \item num_samples : a vector with the number of simulated samples in each condition
#' \item results : a list with `num_proteins' elements. Each element has
#' (1) classification models trained on each simulated dataset;
#' (2) the predictive accuracy on the validation set predicted
#' by the corresponding classification model.
#' \item mean_predictive_accuracy : the mean predictive accuracy over all the simulated datasets.
#' \item mean_feature_importance : the mean protein importance vector over all the simulated datasets,
#' the length of which is `num_proteins'.
#' \item predictive_accuracy : a vector of predictive accuracy on each simulated dataset.
#' \item feature_importance : a matrix of feature importance,
#' where rows are proteins and columns are simulated datasets.
#' the length of which is `num_proteins'.
#' }
#'
#' @format A list with five elements
#' @examples
#' classification_results$num_proteins
#' classification_results$num_samples
#' classification_results$mean_predictive_accuracy
#' head(classification_results$mean_feature_importance)
#'
"classification_results"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.