Nothing
#' Package for summarizing, filtering, imputing, and normalizing metabolomics
#' data.
#'
#' Package performs summarization of replicates, filtering by frequency, several
#' different options for imputing missing data, and a variety of options for
#' transforming, batch correcting, and normalizing data
#'
#' @author Max McGrath
#' @author Matt Mulvahill
#' @author Grant Hughes
#' @author Sean Jacobson
#' @author Harrison Pielke-Lombardo
#' @author Katerina Kechris
#' @docType package
#' @name MSPrep
#' @details
#' Package for pre-analytic processing of mass spectrometry quantification data.
#' Four functions are provided and are intended to be used in sequence (as a
#' pipeline) to produce processed and normalized data. These are
#' msSummarize(), msFilter(), msImpute(), and msNormalize().
#' The function msPrepare() is also provided as a wrapper function combining
#' the four previously mentioned functions.
#'
#' @references
#' Bolstad, B.M.et al.(2003) A comparison of normalization methods for high
#' density oligonucleotide array data based on variance and bias.
#' Bioinformatics, 19, 185-193
#'
#' DeLivera, A.M.et al.(2012) Normalizing and Integrating Metabolomic Data.
#' Anal. Chem, 84, 10768-10776.
#'
#' Gagnon-Bartsh, J.A.et al.(2012) Using control genes to correct for unwanted
#' variation in microarray data. Biostatistics, 13, 539-552.
#'
#' Hughes G, Cruickshank-Quinn C, Reisdorph R, Lutz S, Petrache I, Reisdorph N,
#' Bowler R, Kechris K. MSPrep--Summarization, normalization and diagnostics for
#' processing of mass spectrometry-based metabolomic data. Bioinformatics.
#' 2014;30(1):133-4. Epub 2013/11/01. doi: 10.1093/bioinformatics/btt589.
#' PubMed PMID: 24174567; PMCID: PMC3866554.
#'
#' Johnson, W.E.et al.(2007) Adjusting batch effects in microarray expression
#' data using Empirical Bayes methods. Biostatistics, 8, 118-127.
#'
#' Leek, J.T.et al.(2007) Capturing Heterogeneity in Gene Expression Studies by
#' Surrogate Variable Analysis. PLoS Genetics, 3(9), e161.
#'
#' Oba, S.et al.(2003) A Bayesian missing value estimation for gene expression
#' profile data. Bioinformatics, 19, 2088-2096
#'
#' Redestig, H.et al.(2009) Compensation for Systematic Cross-Contribution
#' Improves Normalization of Mass Spectrometry Based Metabolomics Data. Anal.
#' Chem., 81, 7974-7980.
#'
#' Stacklies, W.et al.(2007) pcaMethods: A bioconductor package providing PCA
#' methods for incomplete data. Bioinformatics, 23, 1164-1167.
#'
#' Wang, W.et al.(2003) Quantification of Proteins and Metabolites by Mass
#' Spectrometry without Isotopic Labeling or Spiked Standards. Anal. Chem., 75,
#' 4818-4826.
#'
#' @examples
#' # Load example data
#' data(msquant)
#'
#' # Call function to tidy, summarize, filter, impute, and normalize data
#' preparedDF <- msPrepare(msquant,
#' minPropPresent = 1/3,
#' missingValue = 1,
#' filterPercent = 0.8,
#' imputeMethod = "knn",
#' normalizeMethod = "quantile + ComBat",
#' transform = "log10",
#' covariatesOfInterest = c("spike"),
#' compVars = c("mz", "rt"),
#' sampleVars = c("spike", "batch", "replicate",
#' "subject_id"),
#' colExtraText = "Neutral_Operator_Dif_Pos_",
#' separator = "_")
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.