Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----load and examine data, include=TRUE--------------------------------------
library(MPRAnalyze)
data("ChrEpi")
summary(ce.colAnnot)
head(ce.colAnnot)
## ----init object, include=TRUE------------------------------------------------
obj <- MpraObject(dnaCounts = ce.dnaCounts, rnaCounts = ce.rnaCounts,
dnaAnnot = ce.colAnnot, rnaAnnot = ce.colAnnot,
controls = ce.control)
## ----library size estimation--------------------------------------------------
## If the library factors are different for the DNA and RNA data, separate
## estimation of these factors is needed. We can also change the estimation
## method (Upper quartile by default)
obj <- estimateDepthFactors(obj, lib.factor = c("batch", "condition"),
which.lib = "dna",
depth.estimator = "uq")
obj <- estimateDepthFactors(obj, lib.factor = c("condition"),
which.lib = "rna",
depth.estimator = "uq")
## In this case, the factors are the same - each combination of batch and
## condition is a single library, and we'll use the default estimation
obj <- estimateDepthFactors(obj, lib.factor = c("batch", "condition"),
which.lib = "both")
## ----quant model fit----------------------------------------------------------
obj <- analyzeQuantification(obj = obj,
dnaDesign = ~ barcode + batch + condition,
rnaDesign = ~ condition)
## ----quant extract and viz----------------------------------------------------
##extract alpha values from the fitted model
alpha <- getAlpha(obj, by.factor = "condition")
##visualize the estimates
boxplot(alpha)
## ----quant test and viz-------------------------------------------------------
## test
res.epi <- testEmpirical(obj = obj,
statistic = alpha$MT)
summary(res.epi)
res.chr <- testEmpirical(obj = obj,
statistic = alpha$WT)
par(mfrow=c(2,2))
hist(res.epi$pval.mad, main="episomal, all")
hist(res.epi$pval.mad[ce.control], main="episomal, controls")
hist(res.chr$pval.mad, main="chromosomal, all")
hist(res.chr$pval.mad[ce.control], main="chromosomal, controls")
par(mfrow=c(1,1))
## ----comp fit-----------------------------------------------------------------
obj <- analyzeComparative(obj = obj,
dnaDesign = ~ barcode + batch + condition,
rnaDesign = ~ condition,
reducedDesign = ~ 1)
## ----comp lrt-----------------------------------------------------------------
res <- testLrt(obj)
head(res)
summary(res)
## ----foldchange---------------------------------------------------------------
## plot log Fold-Change
plot(density(res$logFC))
## plot volcano
plot(res$logFC, -log10(res$pval))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.