Nothing
## randomForestI = makeLearnerSchema("randomForest", "randomForest",
## standardMLIConverter)
randomForestI = makeLearnerSchema("randomForest", "randomForest",
MLIConverter.randomForest,
MLIPredicter.randomForest)
knnI = function(k=1, l=0) {
makeLearnerSchema("MLInterfaces", "knn2",
MLIConverter.knn(k, l),
MLIPredicter.knn)}
knn.cvI = function(k=1, l=0) {
makeLearnerSchema("MLInterfaces", "knn.cv2",
MLIConverter.knncv(k, l))}
dldaI = makeLearnerSchema("MLInterfaces", "dlda2",
MLIConverter.dlda)
rpartI = makeLearnerSchema("rpart", "rpart",
MLIConverter.rpart) # get posterior
ldaI = makeLearnerSchema("MASS", "lda",
MLIConverterListEl.class)
## svmI = makeLearnerSchema("e1071", "svm",
## MLIConverter.svm)
svmI <- makeLearnerSchema("MLInterfaces", "svm2",
MLIConverter.svm,
MLIPredicter.svm)
ldaI.predParms = function(method) { # use this one with argument picking method
makeLearnerSchema("MASS", "lda", # for predict.lda
MLIConverter.ldaPredMeth(method))
}
qdaI = makeLearnerSchema("MASS", "qda",
MLIConverterListEl.class)
glmI.logistic = function(threshold) { # could build ROC
makeLearnerSchema("stats", "glm",
MLIConverter.logistic(threshold))}
RABI = makeLearnerSchema("MLInterfaces", "rab",
MLIConverter.RAB)
lvqI = makeLearnerSchema("MLInterfaces", "lvq",
MLIConverter.dlda)
naiveBayesI = makeLearnerSchema("e1071", "naiveBayes",
MLIConverter.naiveBayes,
MLIPredicter.naiveBayes)
# to do as of 12 Sep 2007 -- inclass, inbagg [ need good cFUN examples before going there ]
# pamr, gbm, logitBoost
## ksvmI = makeLearnerSchema("kernlab", "ksvm",
## standardMLIConverter)
ksvmI <- makeLearnerSchema("MLInterfaces", "ksvm2",
MLIConverter.ksvm,
MLIPredicter.ksvm)
adaI = makeLearnerSchema("ada", "ada",
standardMLIConverter)
#hclustI = function(distMethod, agglomMethod) {
# if (missing(distMethod)) stop("distMethod must be explicitly supplied")
# if (missing(agglomMethod)) stop("agglomMethod must be explicitly supplied")
# makeClusteringSchema( "stats",
# "hclust", distMethod, hclustConverter, agglomMethod) }
#
#kmeansI = function(algorithm, distMethod="identity") {
# if (missing(algorithm)) stop("algorithm must be explicitly supplied")
# makeClusteringSchema( "stats",
# "kmeans", distMethod=distMethod, algorithm=algorithm,
# converter=kmeansConverter) }
#
#pamI = function(distMethod) {
# if (missing(distMethod)) stop("distMethod must be explicitly supplied")
# makeClusteringSchema( "cluster",
## "pam", distMethod, pamConverter) }
#logitboostI = makeLearnerSchema("MLInterfaces", "logitboost2",
# standardMLIConverter)
BgbmI = function(n.trees.pred=1000, thresh=.5) {
makeLearnerSchema("MLInterfaces", "gbm2",
MLIConverter.Bgbm(n.trees.pred,thresh))}
blackboostI = makeLearnerSchema("mboost", "blackboost",
MLIConverter.blackboost)
nnetI = makeLearnerSchema("nnet", "nnet",
MLIConverter.nnet,
MLIPredicter.nnet)
baggingI = makeLearnerSchema("ipred", "bagging",
standardMLIConverter)
rdacvI = makeLearnerSchema("MLInterfaces", "rdacvML",
standardMLIConverter)
rdaI = makeLearnerSchema("MLInterfaces", "rdaML",
standardMLIConverter)
sldaI = makeLearnerSchema("ipred", "slda",
MLIConverter.slda)
# to do as of 12 Sep 2007 -- inclass, inbagg [ need good cFUN examples before going there ]
# pamr, gbm, logitBoost
#hclustI = function(distMethod, agglomMethod) {
# if (missing(distMethod)) stop("distMethod must be explicitly supplied")
# if (missing(agglomMethod)) stop("agglomMethod must be explicitly supplied")
# makeClusteringSchema( "stats",
# "hclust", distMethod, hclustConverter, agglomMethod) }
#
#kmeansI = function(algorithm, distMethod="identity") {
# if (missing(algorithm)) stop("algorithm must be explicitly supplied")
# makeClusteringSchema( "stats",
# "kmeans", distMethod=distMethod, algorithm=algorithm,
# converter=kmeansConverter) }
#
#pamI = function(distMethod) {
# if (missing(distMethod)) stop("distMethod must be explicitly supplied")
# makeClusteringSchema( "cluster",
## "pam", distMethod, pamConverter) }
#logitboostI = makeLearnerSchema("MLInterfaces", "logitboost2",
# standardMLIConverter)
plsdaI <- makeLearnerSchema("MLInterfaces",
"plsda2",
MLIConverter.plsda,
MLIPredicter.plsda)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.