Nothing
library(MCRestimate)
library(randomForest)
library(pamr)
library(e1071)
the.expression.set <- get(load(DataSet))
if(RF){
list.of.parameter <- c(list(mtry=mtry.range,ntree=ntree.range),parameter.for.preprocessing)
r.forest <- MCRestimate(the.expression.set,
class.colum,
classification.fun="RF.wrap",
poss.parameters=list.of.parameter,
thePreprocessingMethods=thePreprocessingfunktionsRF,
cross.outer=cross.outer,
cross.inner=cross.inner,
cross.repeat=cross.repeat,
reference.class=ref.class,
plot.label=plot.label,
rand=SEED)
save(r.forest, file=paste("backRF",SEED,".RData",sep=""))
}
if(GPLS)
{r.gpls <- MCRestimate(the.expression.set,
class.colum,
classification.fun="GPLS.wrap",
poss.parameter=parameter.for.preprocessing,
thePreprocessingMethods=thePreprocessingfunktionsGPLS,
cross.outer=cross.outer,
cross.repeat=cross.repeat,
cross.inner=cross.inner,
reference.class=ref.class,
plot.label=plot.label,
rand=SEED)
save(r.gpls, file=paste("backGPLS",seed,".RData",sep=""))
}
if(PAM){
list.of.parameter <- c(list(threshold=thresholds),parameter.for.preprocessing)
r.pam <- MCRestimate(the.expression.set,
class.colum,
classification.fun="PAM.wrap",
poss.parameter=list.of.parameter,
thePreprocessingMethods=thePreprocessingfunktionsPAM,
cross.outer=cross.outer,
cross.repeat=cross.repeat,
cross.inner=cross.inner,
reference.class=ref.class,
plot.label=plot.label,
rand=SEED)
save(r.pam,file=paste("backPAM",SEED,".RData",sep=""))
}
if(PLR){
list.of.parameter <- c(list(kappa=kappa.range),parameter.for.preprocessing)
r.logReg <- MCRestimate(the.expression.set,
class.colum,
classification.fun="PLR.wrap",
poss.parameter=list.of.parameter,
thePreprocessingMethods=thePreprocessingfunktionsPLR,
cross.outer=cross.outer,
cross.repeat=cross.repeat,
cross.inner=cross.inner,
reference.class=ref.class,
plot.label=plot.label,
rand=SEED)
save(r.logReg,file=paste("backlogReg",SEED,".RData",sep=""))
}
if(SVM){
list.of.parameter <- c(list (gamma=gamma.range,cost=cost.range),parameter.for.preprocessing)
r.svm <- MCRestimate(the.expression.set,
class.colum,
classification.fun="SVM.wrap",
poss.parameter=list.of.parameter,
thePreprocessingMethods=thePreprocessingfunktionsSVM,
cross.outer=cross.outer,
cross.repeat=cross.repeat,
cross.inner=cross.inner,
reference.class=ref.class,
plot.label=plot.label,
rand=SEED)
save(r.svm, file=paste("backSVM",SEED,".RData",sep=""))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.