Nothing
LedPredClass <- R6::R6Class(
"LedPredClass",
inherit = ParameterTuner,
public = list(
kfold.nb = 1,
halve.above = 100,
feature.ranking = NULL,
feature.nb.vector = NULL,
feature.performances = NULL,
best.feature.nb = NULL,
model = NULL,
model.obj = NULL,
weights = NULL,
cv.probs.labels = NULL,
ranges = list(gamma=c(1,10), cost=c(1,10)),
initialize = function(x, y, valid.times = self$valid.times, kfold.nb =
self$kfold.nb, halve.above = self$halve.above, numcores = self$numcores, file.prefix =
self$file.prefix, feature.nb.vector, cost=self$cost, gamma=self$gamma, ranges = self$ranges, kernel=self$kernel) {
#
if (!missing(kernel))
self$kernel = kernel
if (!missing(cost))
self$cost = cost
if (!missing(gamma))
self$gamma = gamma
if (!missing(valid.times)) {
self$valid.times = valid.times
parent.obj = ParameterTuner$new(x = x, y = y, kernel = self$kernel, cost = self$cost, gamma = self$gamma, valid.times = self$valid.times)
} else {
parent.obj = ParameterTuner$new(x = x, y = y, kernel = self$kernel, cost = self$cost, gamma = self$gamma)
}
self$x = parent.obj$x
self$y = parent.obj$y
self$test.folds = parent.obj$test.folds
self$cost = parent.obj$cost
self$gamma = parent.obj$gamma
if (!missing(file.prefix))
self$file.prefix = file.prefix
if (!missing(kfold.nb))
self$kfold.nb = kfold.nb
if (!missing(numcores))
self$numcores = numcores
if (!missing(halve.above))
self$halve.above = halve.above
#
feature.ranking.obj <-
FeatureRanking$new(
x, y, valid.times = self$valid.times, kfold.nb = self$kfold.nb, halve.above =
self$halve.above, numcores = self$numcores, file.prefix = file.prefix, cost=self$cost, gamma=self$gamma, kernel=self$kernel
)
self$feature.ranking = feature.ranking.obj$feature.ranking
#
if (!missing(feature.nb.vector))
self$feature.nb.vector = feature.nb.vector
#
feature.nb.tuner.obj <-
FeatureNbTuner$new(
x = self$x, y = self$y, valid.times = self$valid.times, numcores = self$numcores, feature.ranking =
self$feature.ranking, feature.nb.vector = self$feature.nb.vector, file.prefix =
self$file.prefix, cost=self$cost, gamma=self$gamma, kernel=self$kernel
)
self$feature.performances = feature.nb.tuner.obj$feature.performances
self$best.feature.nb = feature.nb.tuner.obj$best.feature.nb
#
model.perf.obj = ModelPerformance$new(
x = x, y = y, feature.ranking = self$feature.ranking, feature.nb = self$best.feature.nb, file.prefix =
self$file.prefix, cost=self$cost, gamma=self$gamma, kernel=self$kernel, numcores = self$numcores
)
self$model = model.perf.obj$model
self$model.obj = model.perf.obj$model.obj
self$weights = model.perf.obj$weights
self$cv.probs.labels = model.perf.obj$cv.probs.labels
if (!is.null(self$file.prefix))
save(self, file = paste(file.prefix, '_ledpred.rda', sep = ""))
#
# print(self$feature.ranking)
# print(self$best.feature.nb)
# print(rownames(self$model$SV)[1:3])
# print(self$cv.probs.labels$probs[1,1])
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.