Nothing
#LMGene calls function genediff to calculate the unadjusted #gene-specific and posterior p-values of all genes
#and then calls function pvadjust to calculate the FDR-adjusted #p-values of all genes.
#Significant genes for each factor in model (based on either the #gene-specific or posterior FDR-adjusted p-values) are output.
LMGene <-
function (eS, model=NULL, level = 0.05, posterior = FALSE, method = c("MLE", "MOM", "MOMlog"))
{
method <- match.arg(method)
if (class(eS) != "ExpressionSet"){
stop("'eS' must be an object of class 'ExpressionSet'")
}
if (level < 0 || level > 1){
stop("'level' must be between 0 and 1")
}
if (!is.element(method, c("MLE", "MOM", "MOMlog"))){
stop("'method' must be one of 'MLE', 'MOM', 'MOMlog'")
}
pvlist <- genediff(eS, model, method, verbose = FALSE)
#Check for overfitting
if (is.null(pvlist)) {return(NULL)}
#Otherwise proceed
apvlist <- pvadjust(pvlist)
numeff <- ncol(apvlist$Posterior.FDR)
for (effnum in 1:numeff) {
tmp <- rowlist(exprs(eS), effnum, apvlist, level, posterior)
if (effnum == 1) {
if (length(tmp) > 1) {
lmres <- list(tmp = tmp)
}
else if (tmp != -1) {
lmres <- list(tmp = tmp)
}
else {
lmres <- list(tmp = "No significant genes")
}
}
else {
if (length(tmp) > 1) {
lmres <- c(lmres, list(tmp = tmp))
}
else if (tmp != -1) {
lmres <- c(lmres, list(tmp = tmp))
}
else {
lmres <- c(lmres, list(tmp = "No significant genes"))
}
}
effname <- colnames(apvlist$Posterior.FDR)[effnum]
names(lmres)[effnum] <- effname
}
return(lmres)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.