Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
crop = NULL
## Related to
## https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html
)
## ----vignetteSetup, echo=FALSE, message=FALSE, warning = FALSE----------------
## Track time spent on making the vignette
startTime <- Sys.time()
## Bib setup
library("knitcitations")
## Load knitcitations with a clean bibliography
cleanbib()
cite_options(hyperlink = "to.doc", citation_format = "text", style = "html")
## Write bibliography information
bib <- c(
R = citation(),
BiocStyle = citation("BiocStyle")[1],
knitcitations = citation("knitcitations")[1],
knitr = citation("knitr")[1],
rmarkdown = citation("rmarkdown")[1],
sessioninfo = citation("sessioninfo")[1],
testthat = citation("testthat")[1],
ISAnalytics = citation("ISAnalytics")[1]
)
write.bibtex(bib, file = "aggregate_function_usage.bib")
## ----installBioc, eval=FALSE--------------------------------------------------
# ## For release version
# if (!requireNamespace("BiocManager", quietly = TRUE)) {
# install.packages("BiocManager")
# }
# BiocManager::install("ISAnalytics")
#
# ## For devel version
# if (!requireNamespace("BiocManager", quietly = TRUE)) {
# install.packages("BiocManager")
# }
# # The following initializes usage of Bioc devel
# BiocManager::install(version = "devel")
# BiocManager::install("ISAnalytics")
## ----installGitHub, eval=FALSE------------------------------------------------
# # For release version
# if (!require(devtools)) {
# install.packages("devtools")
# }
# devtools::install_github("calabrialab/ISAnalytics",
# ref = "RELEASE_3_12",
# dependencies = TRUE,
# build_vignettes = TRUE
# )
#
# ## Safer option for vignette building issue
# devtools::install_github("calabrialab/ISAnalytics",
# ref = "RELEASE_3_12"
# )
#
# # For devel version
# if (!require(devtools)) {
# install.packages("devtools")
# }
# devtools::install_github("calabrialab/ISAnalytics",
# ref = "master",
# dependencies = TRUE,
# build_vignettes = TRUE
# )
#
# ## Safer option for vignette building issue
# devtools::install_github("calabrialab/ISAnalytics",
# ref = "master"
# )
## -----------------------------------------------------------------------------
library(ISAnalytics)
## ----OptVerbose, eval=FALSE---------------------------------------------------
# # DISABLE
# options("ISAnalytics.verbose" = FALSE)
#
# # ENABLE
# options("ISAnalytics.verbose" = TRUE)
#
## ----OptWidg, eval=FALSE------------------------------------------------------
# # DISABLE HTML REPORTS
# options("ISAnalytics.widgets" = FALSE)
#
# # ENABLE HTML REPORTS
# options("ISAnalytics.widgets" = TRUE)
## -----------------------------------------------------------------------------
withr::with_options(list(ISAnalytics.widgets = FALSE), {
path_AF <- system.file("extdata", "ex_association_file.tsv",
package = "ISAnalytics"
)
root_correct <- system.file("extdata", "fs.zip",
package = "ISAnalytics"
)
root_correct <- unzip_file_system(root_correct, "fs")
association_file <- import_association_file(path_AF, root_correct)
})
## -----------------------------------------------------------------------------
aggregated_meta <- aggregate_metadata(association_file,
grouping_keys = c(
"SubjectID",
"CellMarker",
"Tissue", "TimePoint"
),
import_stats = FALSE
)
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(aggregated_meta)
## -----------------------------------------------------------------------------
withr::with_options(list(ISAnalytics.widgets = FALSE), {
aggregated_meta <- aggregate_metadata(association_file,
grouping_keys = c(
"SubjectID", "CellMarker",
"Tissue", "TimePoint"
),
import_stats = TRUE
)
})
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(aggregated_meta)
## -----------------------------------------------------------------------------
withr::with_options(list(ISAnalytics.widgets = FALSE), {
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("fragmentEstimate", "seqCount"),
matrix_type = "annotated", workers = 2, patterns = NULL,
matching_opt = "ANY", multi_quant_matrix = FALSE
)
})
## -----------------------------------------------------------------------------
# Takes the whole list and produces a list in output
aggregated_matrices <- aggregate_values_by_key(matrices, association_file)
# Takes a single matrix and produces a single matrix as output
aggregated_matrices_single <- aggregate_values_by_key(
matrices$seqCount,
association_file
)
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(head(aggregated_matrices_single))
## -----------------------------------------------------------------------------
agg1 <- aggregate_values_by_key(
x = matrices$seqCount,
association_file = association_file,
key = c("SubjectID", "ProjectID")
)
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(head(agg1))
## -----------------------------------------------------------------------------
agg2 <- aggregate_values_by_key(
x = matrices$seqCount,
association_file = association_file,
key = "SubjectID",
lambda = list(mean = ~ mean(.x, na.rm = TRUE))
)
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(head(agg2))
## -----------------------------------------------------------------------------
agg3 <- aggregate_values_by_key(
x = matrices$seqCount,
association_file = association_file,
key = "SubjectID",
lambda = list(describe = psych::describe)
)
agg3
## -----------------------------------------------------------------------------
## Obtaining multi-quantification matrix
comp <- comparison_matrix(matrices)
agg4 <- aggregate_values_by_key(
x = comp,
association_file = association_file,
key = "SubjectID",
lambda = list(sum = sum, mean = mean),
value_cols = c("seqCount", "fragmentEstimate")
)
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(head(agg4))
## -----------------------------------------------------------------------------
agg5 <- aggregate_values_by_key(
x = matrices$seqCount,
association_file = association_file,
key = "SubjectID",
lambda = list(sum = sum, mean = mean),
group = c(mandatory_IS_vars())
)
## ----echo=FALSE---------------------------------------------------------------
knitr::kable(head(agg5))
## ----reproduce3, echo=FALSE-------------------------------------------------------------------------------------------
## Session info
library("sessioninfo")
options(width = 120)
session_info()
## ----results = "asis", echo = FALSE, warning = FALSE, message = FALSE-------------------------------------------------
## Print bibliography
bibliography()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.