Nothing
#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##
## GNU General Public License for more details. ##
#####################################################################
#-------------------------------------------------------------------------------
# gtoxObjHill: Generate a hill model objective function to optimize
#-------------------------------------------------------------------------------
#' @rdname Models
#'
#' @examples
#'
#' ## Load level 3 data for an assay endpoint ID
#' dat <- gtoxLoadData(lvl=3L, type="mc", fld="aeid", val=3L)
#'
#' ## Compute fitting log-likelyhood
#' gtoxObjHill(c(rep(0,3), 1e-3), dat$logc, dat$resp)
#'
#' @section Hill Model (hill):
#' \code{gtoxObjHill} calculates the likelyhood for a 3 parameter Hill model
#' with the bottom equal to 0. The parameters passed to \code{gtoxObjHill} by
#' \code{p} are (in order) top (\eqn{\mathit{tp}}), log AC50
#' (\eqn{\mathit{ga}}), hill coefficient (\eqn{\mathit{gw}}), and the scale
#' term (\eqn{\sigma}). The hill model value \eqn{\mu_{i}}{\mu[i]} for the
#' \eqn{i^{th}}{ith} observation is given by:
#' \deqn{
#' \mu_{i} = \frac{tp}{1 + 10^{(\mathit{ga} - x_{i})\mathit{gw}}}
#' }{
#' \mu[i] = tp/(1 + 10^(ga - x[i])*gw)}
#' where \eqn{x_{i}}{x[i]} is the log concentration for the \eqn{i^{th}}{ith}
#' observation.
#'
#' @importFrom stats dt
#' @export
gtoxObjHill <- function(p, lconc, resp) {
## This function takes creates an objective function to be optimized using
## the starting hill parameters, log concentration, and response.
##
## Arguments:
## p: a numeric vector of length 4 containg the starting values for
## the hill model, in order: top, log AC50, hill
## coefficient, and log error term
## lconc: a numeric vector containing the log concentration values to
## produce the objective function
## lresp: a numeric vector containing the response values to produce the
## objective function
##
## Value:
## An objective function for the hill model and the given conc-resp data
mu <- p[1]/(1 + 10^((p[2] - lconc)*p[3]))
sum(dt((resp - mu)/exp(p[4]), df=4, log=TRUE) - p[4], na.rm=TRUE)
}
#-------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.