Nothing
#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##
## GNU General Public License for more details. ##
#####################################################################
#-------------------------------------------------------------------------------
# gtoxObjCnst: Generate a constant model objective function to optimize
#-------------------------------------------------------------------------------
#' @rdname Models
#'
#' @examples
#'
#' ## Load level 3 data for an assay endpoint ID
#' dat <- gtoxLoadData(lvl=3L, type="mc", fld="aeid", val=3L)
#'
#' ## Compute fitting log-likelyhood
#' gtoxObjCnst(1, dat$resp)
#'
#' @section Constant Model (cnst):
#' \code{gtoxObjCnst} calculates the likelyhood for a constant model at 0. The
#' only parameter passed to \code{gtoxObjCnst} by \code{p} is the scale term
#' \eqn{\sigma}. The constant model value \eqn{\mu_{i}}{\mu[i]} for the
#' \eqn{i^{th}}{ith} observation is given by:
#' \deqn{\mu_{i} = 0}{\mu[i] = 0}
#'
#' @importFrom stats dt
#' @export
gtoxObjCnst <- function(p, resp) {
## This function takes creates an objective function to be optimized using
## the starting constant model parameter, and response.
##
## Arguments:
## p: a numeric vector of length 1 containg the starting values for
## the constant model, in order: log error term
## lresp: a numeric vector containing the response values to produce the
## objective function
##
## Value:
## An objective function for the constant model and the given resp data
mu <- 0
sum(dt((resp - mu)/exp(p[1]), df=4, log=TRUE) - p[1])
}
#-------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.