Nothing
context("distance-functions")
test_that("pearson distance works", {
set.seed(29042010)
library(breastCancerTRANSBIG)
data(transbig)
Train <- transbig
expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
expression <- expression[sample(seq_len(nrow(expression)), 100), ]
expression <- t(scale(t(expression)))
output <- GSgalgoR::galgo(generations = 2, population = 3, prob_matrix = expression, OS = OS,
distancetype = "pearson", verbose =1 )
expect_is(output,"galgo.Obj")
})
test_that("spearman distance works", {
set.seed(29042010)
library(breastCancerTRANSBIG)
data(transbig)
Train <- transbig
expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
expression <- expression[sample(seq_len(nrow(expression)), 100), ]
expression <- t(scale(t(expression)))
output <- GSgalgoR::galgo(generations = 2, population = 3, prob_matrix = expression, OS = OS,
distancetype = "spearman", verbose = 1)
expect_is(output,"galgo.Obj")
})
test_that("euclidean distance works", {
set.seed(29042010)
library(breastCancerTRANSBIG)
data(transbig)
Train <- transbig
expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
expression <- expression[sample(seq_len(nrow(expression)), 100), ]
expression <- t(scale(t(expression)))
output <- GSgalgoR::galgo(generations = 2, population = 3, prob_matrix = expression, OS = OS,
distancetype = "euclidean", verbose = 1)
expect_is(output,"galgo.Obj")
})
test_that("uncentered distance works", {
set.seed(29042010)
library(breastCancerTRANSBIG)
data(transbig)
Train <- transbig
expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
# We will use a reduced dataset for the example
expression <- expression[sample(seq_len(nrow(expression)), 100), ]
# Now we scale the expression matrix
expression <- t(scale(t(expression)))
# Run galgo
output <- GSgalgoR::galgo(generations = 2, population = 3, prob_matrix = expression, OS = OS,
distancetype = "uncentered", verbose = 0)
expect_is(output,"galgo.Obj")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.