Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval=FALSE--------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("GSEAmining")
## ---- eval=FALSE--------------------------------------------------------------
# install.packages("devtools") # If you have not installed "devtools" package
# library(devtools)
# devtools::install_github("oriolarques/GSEAmining")
## ---- eval=FALSE--------------------------------------------------------------
# # A geneList contains three features:
# # 1.numeric vector: fold change or other type of numerical variable
# # 2.named vector: every number has a name, the corresponding gene ID
# # 3.sorted vector: number should be sorted in decreasing order
# tableTop_p30 <- as.data.frame(tableTop_p30)
# geneList = tableTop_p30[,2]
# names(geneList) = as.character(tableTop_p30[,1])
## ---- eval=FALSE--------------------------------------------------------------
# library(clusterProfiler)
# # Read the .gmt file from MSigDB
# gmtC2<- read.gmt("gmt files/c2.all.v7.1.symbols.gmt")
# gmtC5<- read.gmt('gmt files/c5.all.v7.1.symbols.gmt')
# gmtHALL <- read.gmt('gmt files/h.all.v7.1.symbols.gmt')
#
# # Merge all the gene sets
# gmt_all <- rbind(gmtC2, gmtC5, gmtHALL)
## ---- eval=FALSE--------------------------------------------------------------
# GSEA_p30<-GSEA(geneList, TERM2GENE = gmt_all, nPerm = 1000, pvalueCutoff = 0.5)
#
# # Selection of gene sets with a specific thershold in terms of NES and p.adjust
# genesets_sel <- GSEA_p30@result
## -----------------------------------------------------------------------------
# Structure of the data included in the package
data('genesets_sel', package = 'GSEAmining')
tibble::glimpse(genesets_sel)
## -----------------------------------------------------------------------------
library(GSEAmining)
data("genesets_sel", package = 'GSEAmining')
gs.filt <- gm_filter(genesets_sel,
p.adj = 0.05,
neg_NES = 2.6,
pos_NES = 2)
## ----setup--------------------------------------------------------------------
# Create an object that will contain the cluster of gene sets.
gs.cl <- gm_clust(gs.filt)
## ---- fig.height = 7, fig.width = 7-------------------------------------------
gm_dendplot(gs.filt,
gs.cl)
## ---- fig.height = 7, fig.width = 7-------------------------------------------
gm_dendplot(gs.filt,
gs.cl,
col_pos = 'orange',
col_neg = 'black',
rect = TRUE,
dend_len = 20,
rect_len = 2)
## ---- message = FALSE, fig.height = 7, fig.width = 7--------------------------
gm_enrichterms(gs.filt, gs.cl)
## ---- message = FALSE, fig.height = 7, fig.width = 7--------------------------
gm_enrichterms(gs.filt,
gs.cl,
clust = FALSE,
col_pos = 'chocolate3',
col_neg = 'skyblue3')
## ---- message = FALSE, fig.height = 12, fig.width = 7.2-----------------------
gm_enrichcores(gs.filt, gs.cl)
## ---- eval=FALSE--------------------------------------------------------------
# gm_enrichreport(gs.filt, gs.cl, output = 'gm_report')
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.