Nothing
## ----stable version, eval=FALSE, message=FALSE, warning=FALSE-----------------
# ## try http:// if https:// URLs are not supported
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("GDCRNATools")
## ----development version, eval=FALSE, message=FALSE, warning=FALSE------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("GDCRNATools", version = "devel")
## ----load, eval=TRUE, message=FALSE, warning=FALSE----------------------------
library(GDCRNATools)
## ----load data q, message=FALSE, warning=FALSE, eval=TRUE---------------------
library(DT)
### load RNA counts data
data(rnaCounts)
### load miRNAs counts data
data(mirCounts)
## ----normalization q, message=FALSE, warning=FALSE, eval=TRUE-----------------
####### Normalization of RNAseq data #######
rnaExpr <- gdcVoomNormalization(counts = rnaCounts, filter = FALSE)
####### Normalization of miRNAs data #######
mirExpr <- gdcVoomNormalization(counts = mirCounts, filter = FALSE)
## ----parse meta2 q, message=FALSE, warning=FALSE, eval=TRUE-------------------
####### Parse and filter RNAseq metadata #######
metaMatrix.RNA <- gdcParseMetadata(project.id = 'TCGA-CHOL',
data.type = 'RNAseq',
write.meta = FALSE)
metaMatrix.RNA <- gdcFilterDuplicate(metaMatrix.RNA)
metaMatrix.RNA <- gdcFilterSampleType(metaMatrix.RNA)
datatable(as.data.frame(metaMatrix.RNA[1:5,]), extensions = 'Scroller',
options = list(scrollX = TRUE, deferRender = TRUE, scroller = TRUE))
## ----deg q, message=FALSE, warning=FALSE, eval=TRUE---------------------------
DEGAll <- gdcDEAnalysis(counts = rnaCounts,
group = metaMatrix.RNA$sample_type,
comparison = 'PrimaryTumor-SolidTissueNormal',
method = 'limma')
datatable(as.data.frame(DEGAll),
options = list(scrollX = TRUE, pageLength = 5))
### All DEGs
deALL <- gdcDEReport(deg = DEGAll, gene.type = 'all')
### DE long-noncoding
deLNC <- gdcDEReport(deg = DEGAll, gene.type = 'long_non_coding')
### DE protein coding genes
dePC <- gdcDEReport(deg = DEGAll, gene.type = 'protein_coding')
## ----ce q, message=TRUE, warning=FALSE, eval=TRUE-----------------------------
ceOutput <- gdcCEAnalysis(lnc = rownames(deLNC),
pc = rownames(dePC),
lnc.targets = 'starBase',
pc.targets = 'starBase',
rna.expr = rnaExpr,
mir.expr = mirExpr)
datatable(as.data.frame(ceOutput),
options = list(scrollX = TRUE, pageLength = 5))
## ----sig q, message=FALSE, warning=FALSE, eval=TRUE---------------------------
ceOutput2 <- ceOutput[ceOutput$hyperPValue<0.01
& ceOutput$corPValue<0.01 & ceOutput$regSim != 0,]
## ----edges q, message=FALSE, warning=FALSE, eval=TRUE-------------------------
### Export edges
edges <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'edges')
datatable(as.data.frame(edges),
options = list(scrollX = TRUE, pageLength = 5))
## ----nodes q, message=FALSE, warning=FALSE, eval=TRUE-------------------------
### Export nodes
nodes <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'nodes')
datatable(as.data.frame(nodes),
options = list(scrollX = TRUE, pageLength = 5))
## ----auto rna, eval=FALSE, message=FALSE, warning=FALSE-----------------------
# project <- 'TCGA-CHOL'
# rnadir <- paste(project, 'RNAseq', sep='/')
# mirdir <- paste(project, 'miRNAs', sep='/')
#
# ####### Download RNAseq data #######
# gdcRNADownload(project.id = 'TCGA-CHOL',
# data.type = 'RNAseq',
# write.manifest = FALSE,
# method = 'gdc-client',
# directory = rnadir)
#
# ####### Download mature miRNA data #######
# gdcRNADownload(project.id = 'TCGA-CHOL',
# data.type = 'miRNAs',
# write.manifest = FALSE,
# method = 'gdc-client',
# directory = mirdir)
#
## ----auto clinical, eval=FALSE, message=FALSE, warning=FALSE------------------
# ####### Download clinical data #######
# clinicaldir <- paste(project, 'Clinical', sep='/')
# gdcClinicalDownload(project.id = 'TCGA-CHOL',
# write.manifest = FALSE,
# method = 'gdc-client',
# directory = clinicaldir)
#
## ----parse meta2, message=FALSE, warning=FALSE, eval=TRUE---------------------
####### Parse RNAseq metadata #######
metaMatrix.RNA <- gdcParseMetadata(project.id = 'TCGA-CHOL',
data.type = 'RNAseq',
write.meta = FALSE)
####### Filter duplicated samples in RNAseq metadata #######
metaMatrix.RNA <- gdcFilterDuplicate(metaMatrix.RNA)
####### Filter non-Primary Tumor and non-Solid Tissue Normal samples in RNAseq metadata #######
metaMatrix.RNA <- gdcFilterSampleType(metaMatrix.RNA)
## ----parse meta3, message=FALSE, warning=FALSE, eval=TRUE---------------------
####### Parse miRNAs metadata #######
metaMatrix.MIR <- gdcParseMetadata(project.id = 'TCGA-CHOL',
data.type = 'miRNAs',
write.meta = FALSE)
####### Filter duplicated samples in miRNAs metadata #######
metaMatrix.MIR <- gdcFilterDuplicate(metaMatrix.MIR)
####### Filter non-Primary Tumor and non-Solid Tissue Normal samples in miRNAs metadata #######
metaMatrix.MIR <- gdcFilterSampleType(metaMatrix.MIR)
## ----merge RNAseq, message=FALSE, warning=FALSE, eval=FALSE-------------------
# ####### Merge RNAseq data #######
# rnaCounts <- gdcRNAMerge(metadata = metaMatrix.RNA,
# path = rnadir, # the folder in which the data stored
# organized = FALSE, # if the data are in separate folders
# data.type = 'RNAseq')
#
# ####### Merge miRNAs data #######
# mirCounts <- gdcRNAMerge(metadata = metaMatrix.MIR,
# path = mirdir, # the folder in which the data stored
# organized = FALSE, # if the data are in separate folders
# data.type = 'miRNAs')
## ----merge clinical, message=FALSE, warning=FALSE, eval=FALSE-----------------
# ####### Merge clinical data #######
# clinicalDa <- gdcClinicalMerge(path = clinicaldir, key.info = TRUE)
# clinicalDa[1:6,5:10]
## ----normalization, message=FALSE, warning=FALSE, eval=FALSE------------------
# ####### Normalization of RNAseq data #######
# rnaExpr <- gdcVoomNormalization(counts = rnaCounts, filter = FALSE)
#
# ####### Normalization of miRNAs data #######
# mirExpr <- gdcVoomNormalization(counts = mirCounts, filter = FALSE)
## ----deg, message=FALSE, warning=FALSE, eval=FALSE----------------------------
# DEGAll <- gdcDEAnalysis(counts = rnaCounts,
# group = metaMatrix.RNA$sample_type,
# comparison = 'PrimaryTumor-SolidTissueNormal',
# method = 'limma')
## ----data, message=FALSE, warning=FALSE, eval=TRUE----------------------------
data(DEGAll)
## ----extract, message=FALSE, warning=FALSE, eval=TRUE-------------------------
### All DEGs
deALL <- gdcDEReport(deg = DEGAll, gene.type = 'all')
### DE long-noncoding
deLNC <- gdcDEReport(deg = DEGAll, gene.type = 'long_non_coding')
### DE protein coding genes
dePC <- gdcDEReport(deg = DEGAll, gene.type = 'protein_coding')
## ----volcano, fig.align='center', fig.width=5, message=FALSE, warning=FALSE, eval=TRUE----
gdcVolcanoPlot(DEGAll)
## ----barplot, fig.align='center', fig.height=6, message=FALSE, warning=FALSE, eval=TRUE----
gdcBarPlot(deg = deALL, angle = 45, data.type = 'RNAseq')
## ----heatmap, message=FALSE, warning=FALSE, eval=FALSE------------------------
# degName = rownames(deALL)
# gdcHeatmap(deg.id = degName, metadata = metaMatrix.RNA, rna.expr = rnaExpr)
## ----ce, message=FALSE, warning=FALSE, eval=FALSE-----------------------------
# ceOutput <- gdcCEAnalysis(lnc = rownames(deLNC),
# pc = rownames(dePC),
# lnc.targets = 'starBase',
# pc.targets = 'starBase',
# rna.expr = rnaExpr,
# mir.expr = mirExpr)
## ----ce 2, message=FALSE, warning=FALSE, eval=TRUE----------------------------
### load miRNA-lncRNA interactions
data(lncTarget)
### load miRNA-mRNA interactions
data(pcTarget)
pcTarget[1:3]
## ----ce 22, message=FALSE, warning=FALSE, eval=FALSE--------------------------
# ceOutput <- gdcCEAnalysis(lnc = rownames(deLNC),
# pc = rownames(dePC),
# lnc.targets = lncTarget,
# pc.targets = pcTarget,
# rna.expr = rnaExpr,
# mir.expr = mirExpr)
## ----message=FALSE, warning=FALSE, eval=FALSE---------------------------------
# ceOutput2 <- ceOutput[ceOutput$hyperPValue<0.01 &
# ceOutput$corPValue<0.01 & ceOutput$regSim != 0,]
#
# edges <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'edges')
# nodes <- gdcExportNetwork(ceNetwork = ceOutput2, net = 'nodes')
#
# write.table(edges, file='edges.txt', sep='\t', quote=F)
# write.table(nodes, file='nodes.txt', sep='\t', quote=F)
## ----cor plot, eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE------------
# gdcCorPlot(gene1 = 'ENSG00000251165',
# gene2 = 'ENSG00000091831',
# rna.expr = rnaExpr,
# metadata = metaMatrix.RNA)
## ----shiny cor plot, eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE------
# shinyCorPlot(gene1 = rownames(deLNC),
# gene2 = rownames(dePC),
# rna.expr = rnaExpr,
# metadata = metaMatrix.RNA)
## ----survival, message=FALSE, warning=FALSE, eval=FALSE-----------------------
# ####### CoxPH analysis #######
# survOutput <- gdcSurvivalAnalysis(gene = rownames(deALL),
# method = 'coxph',
# rna.expr = rnaExpr,
# metadata = metaMatrix.RNA)
## ----survival2, message=FALSE, warning=FALSE, eval=FALSE----------------------
# ####### KM analysis #######
# survOutput <- gdcSurvivalAnalysis(gene = rownames(deALL),
# method = 'KM',
# rna.expr = rnaExpr,
# metadata = metaMatrix.RNA,
# sep = 'median')
## ----km plot, eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE, eval=FALSE----
# gdcKMPlot(gene = 'ENSG00000136193',
# rna.expr = rnaExpr,
# metadata = metaMatrix.RNA,
# sep = 'median')
## ----shiny km plot, eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE, eval=FALSE----
# shinyKMPlot(gene = rownames(deALL), rna.expr = rnaExpr,
# metadata = metaMatrix.RNA)
## ----enrichment, message=FALSE, warning=FALSE, eval=FALSE---------------------
# enrichOutput <- gdcEnrichAnalysis(gene = rownames(deALL), simplify = TRUE)
## ----enrichment data, message=FALSE, warning=FALSE, eval=TRUE-----------------
data(enrichOutput)
## ----go bar, fig.height=8, fig.width=15.5, message=FALSE, warning=FALSE, eval=TRUE----
gdcEnrichPlot(enrichOutput, type = 'bar', category = 'GO', num.terms = 10)
## ----go bubble, echo=TRUE, fig.height=8, fig.width=12.5, message=FALSE, warning=FALSE, eval=TRUE----
gdcEnrichPlot(enrichOutput, type='bubble', category='GO', num.terms = 10)
## ----shiny pathview, message=FALSE, warning=FALSE, eval=FALSE-----------------
# library(pathview)
#
# deg <- deALL$logFC
# names(deg) <- rownames(deALL)
## ----pathway, message=FALSE, warning=FALSE, eval=TRUE-------------------------
pathways <- as.character(enrichOutput$Terms[enrichOutput$Category=='KEGG'])
pathways
## ----shiny pathview2, eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE-----
# shinyPathview(deg, pathways = pathways, directory = 'pathview')
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.