Nothing
## ----style, echo=FALSE, results='hide', message=FALSE-------------------------
library(BiocStyle)
library(knitr)
opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)
knitr::opts_chunk$set(echo = TRUE)
## ---- eval = FALSE------------------------------------------------------------
# if(!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install("DepecheR")
## -----------------------------------------------------------------------------
library(DepecheR)
data('testData')
str(testData)
## ----eval=FALSE---------------------------------------------------------------
# testDataDepeche <- depeche(testData[, 2:15])
## -----------------------------------------------------------------------------
## [1] "Files will be saved to ~/Desktop"
## [1] "As the dataset has less than 100 columns, peak centering is applied."
## [1] "Set 1 with 7 iterations completed in 14 seconds."
## [1] "Set 2 with 7 iterations completed in 6 seconds."
## [1] "Set 3 with 7 iterations completed in 6 seconds."
## [1] "The optimization was iterated 21 times."
## ----echo=FALSE---------------------------------------------------------------
data("testDataDepeche")
## -----------------------------------------------------------------------------
str(testDataDepeche)
## ----eval=FALSE---------------------------------------------------------------
# library(Rtsne)
# testDataSNE <- Rtsne(testData[,2:15], pca=FALSE)
## ----echo=FALSE---------------------------------------------------------------
data("testDataSNE")
## -----------------------------------------------------------------------------
dColorPlot(colorData = testDataDepeche$clusterVector, xYData = testDataSNE$Y,
colorScale = "dark_rainbow", plotName = "Cluster")
## -----------------------------------------------------------------------------
dColorPlot(colorData = testData[2], xYData = testDataSNE$Y)
## -----------------------------------------------------------------------------
densContour <- dContours(testDataSNE$Y)
dDensityPlot(xYData = testDataSNE$Y, plotName = 'All_events',
colorScale="purple3", densContour = densContour)
#Here the data for the first group is plotted
dDensityPlot(xYData = testDataSNE$Y[testData$label==0,], plotName = 'Group_0',
colorScale="blue", densContour = densContour)
#And here comes the second group
dDensityPlot(xYData = testDataSNE$Y[testData$label==1,], plotName = 'Group_1',
colorScale="red", densContour = densContour)
## -----------------------------------------------------------------------------
dResidualPlot(
xYData = testDataSNE$Y, groupVector = testData$label,
clusterVector = testDataDepeche$clusterVector)
## -----------------------------------------------------------------------------
dWilcoxResult <- dWilcox(
xYData = testDataSNE$Y, idsVector = testData$ids,
groupVector = testData$label, clusterVector = testDataDepeche$clusterVector)
## ----eval=FALSE---------------------------------------------------------------
# sPLSDAObject <- dSplsda(xYData = testDataSNE$Y, idsVector = testData$ids,
# groupVector = testData$label,
# clusterVector = testDataDepeche$clusterVector)
# ## Saving 3 x 3 in image
#
# ## [1] "The separation of the datasets was perfect, with no overlap between
# ## the groups"
#
# ## [1] "Files were saved at /Users/jakthe/Labbet/GitHub/DepecheR/vignettes"
#
## ----eval---------------------------------------------------------------------
dViolins(testDataDepeche$clusterVector, inDataFrame = testData,
plotClusters = 3, plotElements = testDataDepeche$essenceElementList)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.