Nothing
#' @title Function to simulate two-component test data
#' @description Function to simulate two-component test data for DeMixT.
#'
#' @param G Number of genes for simulation.
#' @param My Number of mixture tumor samples for simulation.
#' @param M1 Number of normal reference for simulation.
#' @param output.more.info The logical flag indicating wheter to show True.data.T
#' and True.data.N1 in the output. The default is FALSE.
#'
#' @return
#' \item{pi}{A matrix of estimated proportion. First row and second row
#' corresponds to the proportion estimate for the known components and unkown
#' component respectively for two or three component settings. Each column
#' corresponds to one sample.}
#' \item{Mu}{Simulated \eqn{Mu} of log2-normal distribution for both known
#' (\eqn{MuN1}) and unknown component (\eqn{MuT}).}
#' \item{Sigma}{Simulated \eqn{Sigma} of log2-normal distribution for both
#' known (\eqn{SigmaN1}) and unknown component (\eqn{SigmaT}).}
#' \item{data.Y}{A SummarizedExperiment object of expression data from mixed
#' tumor samples. It is a \eqn{G} by \eqn{My} matrix where \eqn{G} is the number
#' of genes and \eqn{My} is the number of mixed samples. Samples with the same
#' tissue type should be placed together in columns.}
#' \item{data.N1}{A SummarizedExperiment object of expression data
#' from reference component 1 (e.g., normal). It is a \eqn{G} by \eqn{M1} matrix
#' where \eqn{G} is the number of genes and \eqn{M1} is the number of samples
#' for component 1.}
#' \item{True.data.T}{A SummarizedExperiment object of simulated tumor expression
#' data. It is a \eqn{G} by \eqn{My} matrix, where \eqn{G} is the number of
#' genes and \eqn{My} is the number of mixed samples. This is enabled only when
#' output.more.info = TRUE.}
#' \item{True.data.N1}{A SummarizedExperiment object of simulated true
#' expression data for reference component 1 (e.g., normal). It is a \eqn{G}
#' by \eqn{M1} matrix where \eqn{G} is the number of genes and \eqn{M1} is the
#' number of samples for component 1. This is enabled only when
#' output.more.info = TRUE.}
#'
#' @name simulate_2comp
#'
#'
#' @export
#'
#' @examples
#' test.data = simulate_2comp(G = 500, My = 100, M1 = 100)
#' test.data$pi
#' test.data$Mu
#' test.data$Sigma
simulate_2comp <- function(G = 500, My = 100, M1 = 100,
output.more.info = FALSE){
requireNamespace("truncdist", quietly=TRUE)
requireNamespace("SummarizedExperiment", quietly=TRUE)
## Simulate MuN and MuT for each gene
MuN <- rnorm(G, 7, 1.5)
MuT <- rnorm(G, 7, 1.5)
Mu <- cbind(MuN, MuT)
colnames(Mu) <- c('MuN', 'MuT')
rownames(Mu) <- paste('Gene', seq = seq(1, G))
## Simulate SigmaN and SigmaT for each gene
SigmaN <- runif(n = G, min = 0.1, max = 0.8)
SigmaT <- runif(n = G, min = 0.1, max = 0.8)
Sigma <- cbind(SigmaN, SigmaT)
colnames(Sigma) <- c('SigmaN', 'SigmaT')
rownames(Sigma) <- paste('Gene', seq = seq(1, G))
## Initial values
data.N1 <- matrix(0, G, M1)
data.Y <- matrix(0, G, My)
True.data.N1 <- matrix(0, G, My)
True.data.T <- matrix(0, G, My)
## Creat row and column name
rownames(data.N1) <- rownames(data.Y) <-
rownames(True.data.N1) <- rownames(True.data.T) <-
paste('Gene', seq = seq(1, G))
colnames(data.N1) <- paste('Sample', seq = seq(1, M1))
colnames(data.Y) <- colnames(True.data.N1) <-
colnames(True.data.T) <- paste('Sample', seq = seq(1, My))
## Simulate Tumor Proportion
PiT = truncdist::rtrunc(n = My,
spec = 'norm',
mean = 0.55,
sd = 0.2,
a = 0.25,
b = 0.95)
pi <- rbind(1-PiT, PiT)
rownames(pi) <- c('PiN', 'PiT')
colnames(pi) <- paste('Sample', seq = seq(1, My))
## Simulate Data
for(k in 1:G){
data.N1[k,] <- 2^rnorm(M1, MuN[k], SigmaN[k]); # normal reference
True.data.T[k,] <- 2^rnorm(My, MuT[k], SigmaT[k]); # True Tumor
True.data.N1[k,] <- 2^rnorm(My, MuN[k], SigmaN[k]); # True Normal
data.Y[k,] <- pi[1,]*True.data.N1[k,] + pi[2,]*True.data.T[k,] # Mixture Tumor
}
## Transfer into bioconductor format
data.Y <- SummarizedExperiment(assays = SimpleList(counts = as.matrix(data.Y)),
rowData = DataFrame(row.names = rownames(data.Y)),
colData = DataFrame(row.names = colnames(data.Y)))
data.N1 <- SummarizedExperiment(assays = SimpleList(counts = as.matrix(data.N1)),
rowData = DataFrame(row.names = rownames(data.N1)),
colData = DataFrame(row.names = colnames(data.N1)))
True.data.T <- SummarizedExperiment(assays = SimpleList(counts = as.matrix(True.data.T)),
rowData = DataFrame(row.names = rownames(True.data.T)),
colData = DataFrame(row.names = colnames(True.data.T)))
True.data.N1 <- SummarizedExperiment(assays = SimpleList(counts = as.matrix(True.data.N1)),
rowData = DataFrame(row.names = rownames(True.data.N1)),
colData = DataFrame(row.names = colnames(True.data.N1)))
if(output.more.info){
test.data = list(pi=pi, Mu = Mu, Sigma = Sigma,
data.Y = data.Y, data.N1 = data.N1,
True.data.T = True.data.T, True.data.N1 = True.data.N1)
}else{
test.data = list(pi=pi, Mu = Mu, Sigma = Sigma,
data.Y = data.Y, data.N1 = data.N1)
}
return(test.data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.