Nothing
#' DMRScan: An R-package for identification of Differentially Metylated Regions
#' @author Christian Page, \email{page.ntnu@gmail.com}
#' @references Not Published yet (Under revision)
#' @aliases DMRScan_package
#' @keywords DMR, DMRScan
#' @docType package
#' @name DMRScan_package
#' @param observations An object of type GRangesList from makeCpGregions
#' @param windowSize A sequence of windowSizes for the slidingWindow,
#' must be an integer
#' @param windowThreshold Optional argument with corresponding cut-off for
#' each window. Will be estimated if not supplied.
#' @param ... Optional arguments to be pased to \code{\link{estimateThreshold}},
#' if no grid is specified.
#' @return An object of type \code{\link{GRanges}} with signficantly differentially
# methylated regions
#' @examples
#' ## nProbeoad methylation data from chromosome 22
#' data(DMRScan.methylationData)
#' ## nProbeoad phenotype (end-point for methylation data)
#' data(DMRScan.phenotypes)
#'
#' ## Test for an association between phenotype and Methylation
#' test.statistics <- apply(DMRScan.methylationData,1,function(x,y)
#' summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2,3],
#' y = DMRScan.phenotypes)
#' ## Set chromosomal position to each test-statistic
#' positions <- data.frame(matrix(as.integer(unlist(strsplit(names(test.statistics), split="chr|[.]"))), ncol = 3, byrow = TRUE))[,-1]
#' ## Set clustering features
#' min.cpg <- 4 ## Minimum number of CpGs in a tested cluster
#' ## Maxium distance (in base-pairs) within a cluster
#' ## before it is broken up into two seperate cluster
#' max.gap <- 750
#'
#
#' ## Identify all clusters, and generate a list for each cluster
#' regions <- makeCpGregions(observations = test.statistics,
#' chr = positions[,1], pos = positions[,2],
#' maxGap = max.gap, minCpG = min.cpg)
#' ## Number of CpGs in the slidingWindows, can be either a single number
#' ## or a sequence of windowSizes
#' windowSizes <- 3:7
#' nCpG <- sum(sapply(regions, length)) ## Number of CpGs to be tested
#'
#' # Estimate the windowThreshold, based on the number of CpGs and windowSizes
#' windowThresholds <- estimateWindowThreshold(nProbe = nCpG,
#' windowSize = windowSizes, method = "sampling", mcmc = 10000)
#' ## Run the slidingWindow
#' DMRScanResults <- dmrscan(observations = regions,
#' windowSize = windowSizes,
#' windowThreshold = windowThresholds)
#' ## Print the result
#' print(DMRScanResults)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.