R/Package.R

#' CoGAPS: Coordinated Gene Activity in Pattern Sets
#'
#' CoGAPS implements a Bayesian MCMC matrix factorization algorithm,
#' GAPS, and links it to gene set statistic methods to infer
#' biological process activity.  It can be used to perform
#' sparse matrix factorization on any data, and when this
#' data represents biomolecules, to do gene set analysis.
#' \tabular{ll}{
#' Package: \tab CoGAPS\cr
#' Type: \tab Package\cr
#' Version: \tab 2.99.0\cr
#' Date: \tab 2018-01-24\cr
#' License: \tab LGPL\cr
#' }
#' @author Maintainer: Elana J. Fertig \email{ejfertig@jhmi.edu},
#'             Michael F. Ochs \email{ochsm@tcnj.edu}
#' @references
#' Fertig EJ, Ding J, Favorov AV, Parmigiani G, Ochs MF.
#' CoGAPS: an R/C++ package to identify patterns and biological
#' process activity in transcriptomic data.
#' Bioinformatics. 2010 Nov 1;26(21):2792-3
#' @docType package
#' @name CoGAPS-package
#' @importFrom Rcpp evalCpp
#' @useDynLib CoGAPS
NULL

#' GIST gene expression data from Ochs et al. (2009)
#' @docType data
#' @name GIST.data_frame
NULL

#' GIST gene expression data from Ochs et al. (2009)
#' @docType data
#' @name GIST.matrix
NULL

#' GIST gene expression uncertainty matrix from Ochs et al. (2009)
#' @docType data
#' @name GIST.uncertainty
NULL

#' CoGAPS result from running on GIST dataset
#' @docType data
#' @name GIST.result
NULL

Try the CoGAPS package in your browser

Any scripts or data that you put into this service are public.

CoGAPS documentation built on Nov. 8, 2020, 5:02 p.m.