Nothing
#' CoGAPS: Coordinated Gene Activity in Pattern Sets
#'
#' CoGAPS implements a Bayesian MCMC matrix factorization algorithm,
#' GAPS, and links it to gene set statistic methods to infer
#' biological process activity. It can be used to perform
#' sparse matrix factorization on any data, and when this
#' data represents biomolecules, to do gene set analysis.
#' \tabular{ll}{
#' Package: \tab CoGAPS\cr
#' Type: \tab Package\cr
#' Version: \tab 2.99.0\cr
#' Date: \tab 2018-01-24\cr
#' License: \tab LGPL\cr
#' }
#' @author Maintainer: Elana J. Fertig \email{ejfertig@jhmi.edu},
#' Michael F. Ochs \email{ochsm@tcnj.edu}
#' @references
#' Fertig EJ, Ding J, Favorov AV, Parmigiani G, Ochs MF.
#' CoGAPS: an R/C++ package to identify patterns and biological
#' process activity in transcriptomic data.
#' Bioinformatics. 2010 Nov 1;26(21):2792-3
#' @docType package
#' @name CoGAPS-package
#' @importFrom Rcpp evalCpp
#' @useDynLib CoGAPS
NULL
#' GIST gene expression data from Ochs et al. (2009)
#' @docType data
#' @name GIST.data_frame
NULL
#' GIST gene expression data from Ochs et al. (2009)
#' @docType data
#' @name GIST.matrix
NULL
#' GIST gene expression uncertainty matrix from Ochs et al. (2009)
#' @docType data
#' @name GIST.uncertainty
NULL
#' CoGAPS result from running on GIST dataset
#' @docType data
#' @name GIST.result
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.