Nothing
Coordinated Gene Activity in Pattern Sets (CoGAPS) implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis.
Package details |
|
---|---|
Author | Thomas Sherman, Wai-shing Lee, Conor Kelton, Ondrej Maxian, Jacob Carey, Genevieve Stein-O'Brien, Michael Considine, Maggie Wodicka, John Stansfield, Shawn Sivy, Carlo Colantuoni, Alexander Favorov, Mike Ochs, Elana Fertig |
Bioconductor views | Bayesian Clustering DifferentialExpression DimensionReduction GeneExpression GeneSetEnrichment ImmunoOncology Microarray MultipleComparison RNASeq TimeCourse Transcription |
Maintainer | Elana J. Fertig <ejfertig@jhmi.edu>, Thomas D. Sherman <tomsherman159@gmail.com>, Melanie L. Loth <mloth1@jhmi.edu> |
License | BSD_3_clause + file LICENSE |
Version | 3.10.0 |
Package repository | View on Bioconductor |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.