Nothing
## ---- eval=TRUE, warnings = FALSE, echo=TRUE,message=FALSE--------------------
library(ChIPanalyser)
#Load data
data(ChIPanalyserData)
# Loading DNASequenceSet from BSgenome object
# We recommend using the latest version of the genome
# Please ensure that all your data is aligned to the same version of the genome
library(BSgenome.Dmelanogaster.UCSC.dm3)
DNASequenceSet <-getSeq(BSgenome.Dmelanogaster.UCSC.dm3)
#Loading Position Frequency Matrix
PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BCDSlx.pfm")
#Checking if correctly loaded
ls()
## ----eval=TRUE, warnings = FALSE----------------------------------------------
eveLocusChip<-processingChIP(profile=eveLocusChip,
loci=eveLocus,
cores=1)
eveLocusChip
## ---- eval =TRUE--------------------------------------------------------------
# PFMs are automatically converted to PWM when build genomicProfiles
GP<-genomicProfiles(PFM=PFM,PFMFormat="raw")
GP
## ---- eval=FALSE--------------------------------------------------------------
# GP<-genomicProfiles(PWM=PositionWeightMatrix)
## ----eval=TRUE,warnings=FALSE-------------------------------------------------
## surpress dependency warnings
optimal<-suppressWarnings(computeOptimal(genomicProfiles=GP,
DNASequenceSet=DNASequenceSet,
ChIPScore=eveLocusChip,
chromatinState=Access))
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
## Lambda Values
seq(0.25,5,by=0.25)
## Bound Molecule Values
c(1, 10, 20, 50, 100,
200, 500,1000,2000, 5000,10000,20000,50000, 100000,
200000, 500000, 1000000)
## ---- eval =T-----------------------------------------------------------------
optimalParam<-optimal$Optimal
optimalParam$OptimalParameters
## ---- eval=TRUE, warnings = FALSE, fig.width=10, fig.height=8-----------------
# Plotting Optimal heat maps
par(oma=c(0,0,3,0))
layout(matrix(1:8,ncol=4, byrow=T),width=c(6,1.5,6,1.5),height=c(1,1))
plotOptimalHeatMaps(optimalParam,layout=FALSE)
## ----eval=TRUE----------------------------------------------------------------
optimalParam<-searchSites(optimal,lambdaPWM=1.25,BoundMolecules=10000)
## ---- eval=TRUE,fig.width=12, fig.height=4.5----------------------------------
plotOccupancyProfile(predictedProfile=optimalParam$ChIPProfiles,
ChIPScore=eveLocusChip,
chromatinState=Access,
occupancy=optimalParam$Occupancy,
goodnessOfFit=optimalParam$goodnessOfFit)
## ---- eval =TRUE--------------------------------------------------------------
## Suggested Parameters to start with.
parameterOptions()
## Changing parameters
PO <- parameterOptions(noiseFilter="sigmoid",chipSd=150,chipMean=150,lociWidth=30000)
## ----eval=FALSE---------------------------------------------------------------
# ## Top 50 loci based on ChIP score
# processingChIP(profile="/path/to/ChIP",
# loci=NULL,
# reduce=50,
# parameterOptions=PO)
#
# ## Top 50 loci ALSO containing peaks
# processingChIP(profile="/path/to/ChIP",
# loci=NULL,
# reduce=50,
# peaks="/path/to/peaks",
# parameterOptions=PO)
#
# ## Top 50 loci containing BOTH peaks and Accessible DNA
# processingChIP(profile="/path/to/ChIP",
# loci=NULL,
# reduce=50,
# peaks="/path/to/peaks",
# chromatinState="/path/to/chromatinState"
# parameterOptions=PO)
#
## ---- eval=TRUE---------------------------------------------------------------
str(genomicProfiles())
GP <- genomicProfiles(PFM=PFM, PFMFormat="raw", BPFrequency=DNASequenceSet)
GP
## ---- eval=FALSE--------------------------------------------------------------
# ## Parsing pre computed parameters (processingChIP function)
# GP<-genomicProfiles(PFM=PFM, PFMFormat="raw", BPFrequency=DNASequenceSet,
# ChIPScore=ChIPScore)
#
# ## Parsing pre assigned function (parameterOptions)
# parameterOptions<-parameterOptions(lambdaPWM=c(1,2,3),
# boundMolecules=c(5,50,500))
# GP<-genomicProfiles(PFM=PFM, PFMFormat="raw", BPFrequency=DNASequenceSet,
# parameterOptions=parameterOptions)
#
# ## Direct parameter assignement
#
# GP<-genomicProfiles(PFM=PFM, PFMFormat="raw", BPFrequency=DNASequenceSet,
# lambdaPWM=c(1,2,3),boundMolecules=c(4,500,8000))
## ---- eval=FALSE--------------------------------------------------------------
# ## Setting custom parameters
# OP<-parameterOptions(lambdaPWM=seq(1,10,by=0.5),
# boundMolecules=seq(1,100000, length.out=20))
#
# ## Computing ONLY Optimal Parameters and MSE as goodness Of Fit metric
# optimal<-computeOptimal(genomicProfiles=GP,
# DNASequenceSet=DNASequenceSet,
# ChIPScore=eveLocusChip,
# chromatinState=Access,
# parameterOptions=OP,
# optimalMethod="MSE",
# returnAll=FALSE)
#
# ### Computing ONLY Optimal Parameters and using Rank slection method
# optimal<-computeOptimal(genomicProfiles=GP,
# DNASequenceSet=DNASequenceSet,
# ChIPScore=eveLocusChip,
# chromatinState=Access,
# parameterOptions=OP,
# optimalMethod="all",
# rank=TRUE)
#
## ---- eval=FALSE--------------------------------------------------------------
# ## Extracted Optimal Parameters
# optimalParam<-optimal$Optimal
#
# ## Plotting heat maps
# plotOptimalHeatMaps(optimalParam,overlay=TRUE)
## ----eval=TRUE,warnings=FALSE-------------------------------------------------
## Creating genomic Profiles object with PFMs and associated parameters
GP <- genomicProfiles(PFM=PFM,PFMFormat="raw",BPFrequency=DNASequenceSet,
lambdaPWM=1, boundMolecules=58794)
## Computing Genome Wide Score required
GW <- computeGenomeWideScores(genomicProfiles=GP,
DNASequenceSet=DNASequenceSet,
chromatinState=Access)
GW
## Computing PWM score above threshold
pwm <- computePWMScore(genomicProfiles=GW,
DNASequenceSet=DNASequenceSet,
loci=eveLocusChip,
chromatinState=Access)
pwm
## Computing Occupancy of sites above threshold
occup <- computeOccupancy(genomicProfiles=pwm)
occup
## Compute ChIP seq like profiles
chip <- computeChIPProfile(genomicProfiles=occup,
loci=eveLocusChip)
chip
## Compute goodness Of Fit of model
accu <- profileAccuracyEstimate(genomicProfiles=chip,
ChIPScore=eveLocusChip)
accu
## ---- eval=TRUE,fig.width=12, fig.height=4.5----------------------------------
plotOccupancyProfile(predictedProfile=chip,
ChIPScore=eveLocusChip,
chromatinState=Access,
occupancy=occup,
goodnessOfFit=accu,
geneRef=geneRef)
## ---- eval=TRUE,echo=TRUE-----------------------------------------------------
parameterOptions()
## ---- eval=T, echo=T----------------------------------------------------------
str(genomicProfiles())
## ---- eval=F, echo=T----------------------------------------------------------
# ## Accessors and Setters for parameterOptions and genomicProfiles
# avrageExpPWMScore(obj)
# backgroundSignal(obj)
# backgroundSignal(obj)<-value
# boundMolecules(obj)
# boundMolecules(obj)<-value
# BPFrequency(obj)
# BPFrequency(obj)<-value
# chipMean(obj)
# chipMean(obj)<-value
# chipSd(obj)
# chipSd(obj)<-value
# chipSmooth(obj)
# chipSmooth(obj)<-value
# DNASequenceLength(obj)
# drop(obj)
# lambdaPWM(obj)
# lambdaPWM(obj)<-value
# lociWidth(obj)
# lociWidth(obj)<-value
# maxPWMScore(obj)
# maxSignal(obj)
# maxSignal(obj)<-value
# minPWMScore(obj)
# naturalLog(obj)
# naturalLog(obj)<-value
# noiseFilter(obj)
# noiseFilter(obj)<-value
# noOfSites(obj)
# noOfSites(obj)<-value
# PFMFormat(obj)
# PFMFormat(obj)<-value
# ploidy(obj)
# ploidy(obj)<-value
# PositionFrequencyMatrix(obj)
# PositionFrequencyMatrix(obj)<-value
# PositionWeightMatrix(obj)
# PositionWeightMatrix<-value
# profiles(obj)
# PWMpseudocount(obj)
# PWMpseudocount(obj)<-value
# PWMThreshold(obj)
# PWMThreshold(obj)<-value
# removeBackground(obj)
# removeBackground(obj)<-value
#
# stepSize(obj)
# stepSize(obj)<-value
# strandRule(obj)
# strandRule(obj)<-value
# whichstrand(obj)
# whichstrand(obj)<-value
#
# ## ChIPScore slots accessors
# loci(obj)
# scores(obj)
## ----eval=T-------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.