Nothing
#' @title get maximum D value for three-by-two a family
#' @description
#' Returns the maximum D value for a particular family as described as D_fam
#' on pages 6 and 7 of Assessing Statistical Significance of Causal Graphs in Assessing Statistical Signifcance of Causal Graphs
#' @param r_p a r+ row sum from the prediction-observation matrix
#' @param r_m a r- row sum from the prediction-observation matrix
#' @param r_z a r0 row sum from the prediction-observation matrix
#' @param n_p a number of predicted increases from the prediction-observation matrix
#' @param n_m a number of predicted decreases from the prediction-observation matrix
#' @param predictionListStats a vector contain the number of postive, negative and non-significant/contradictory predictions: q+, q- and q0.
#' @param logOfFactorialOfPredictionListStats a vector containing the log of the factorial for each element in the predictionListStats object
#' @param returnlog whether or not the maximum D value should be returned as a log (TRUE). Otherwise a non-logged value is returned.
#' @return Maximum D_fam Value
#' @references
#' L Chindelevitch et al.
#' Assessing statistical significance in causal graphs.
#' BMC Bioinformatics, 13(35), 2012.
GetMaxDValueForAThreeByTwoFamily <- function(r_p, r_m, r_z, n_p, n_m, predictionListStats, logOfFactorialOfPredictionListStats, returnlog = FALSE) {
# Compute the maximum D value for a particular superfamily (a 3x2 matrix) - described in Assessing Statistical Significance of Causal Graphs (page
# 6/7)
# Inputs: twoByTwoContingencyTable Approximate values of n++, n+-, n-+ and n--, these values are statistical significance of causal graphs)
# predictionListStats A vector containing the values q+, q- and q0 (the number of positive/negative/non-significant (or contradictory) predictions)
# logOfFactorialOfPredictionListStats A vector containing the log of the factorial value for each entry in predictionListStats returnlog A boolean
# describing whether the log of the D-Value should be returned
total <- n_p + n_m
# Compute the values of n++, n+-, n-+, n--, n0+, and n0- that maximise the D-value; these correspond to the following formula: n_ab is approximately
# equal to q_a*n_b/T, where T = n+ + n-, and a,b are either + or -. See Assessing statistical significance in causal graphs, page 7 - the formula
# is not stated explicitly but follows from the logic of algorithm 1a).
if (total > 0) {
n_pp <- ceiling(r_p * n_p/total)
n_pm <- r_p - n_pp
n_mp <- ceiling(r_m * n_p/total)
# Check this rounding produces a valid combination i.e. n++ + n-+ <= n+
if ((n_mp + n_pp) > n_p) {
n_mp <- floor(r_m * n_p/total)
}
n_mm <- r_m - n_mp
n_zp <- n_p - (n_pp + n_mp)
n_zm <- n_m - (n_pm + n_mm)
} else {
n_pp <- 0
n_pm <- 0
n_mp <- 0
n_mm <- 0
n_zp <- 0
n_zm <- 0
}
threeByTwoContingencyTable <- c(n_pp, n_pm, n_mp, n_mm, n_zp, n_zm)
maximumDFamValue <- GetApproximateMaximumDValueFromThreeByTwoContingencyTable(threeByTwoContingencyTable, predictionListStats, logOfFactorialOfPredictionListStats,
returnlog)
return(maximumDFamValue)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.