Nothing
options(signif = 3, digits = 3) knitr::opts_chunk$set(tidy = FALSE, cache = TRUE, autodep = TRUE, fig.height = 5.5, message = FALSE, error = FALSE, warning = TRUE) set.seed(0xdada)
This document reproduces the commands used in older versions of the CAGEr
vignette that were based on the legacy CAGEset
class. Its purpose is to check
that the results of the computations are identical with the old documentation
and with the current documentation based on the new CAGEexp
class.
library(CAGEr) library(BSgenome.Drerio.UCSC.danRer7)
inputDir <- system.file("extdata", package = "CAGEr") pathsToInputFiles <- list.files(inputDir, pattern = "ctss", full.names = TRUE) basename(pathsToInputFiles)
myCAGEset <- new("CAGEset", genomeName = "BSgenome.Drerio.UCSC.danRer7", inputFiles = pathsToInputFiles, inputFilesType = "ctss", sampleLabels = c("zf_30p_dome", "zf_high", "zf_prim6_rep1", "zf_prim6_rep2", "zf_unfertilized_egg")) myCAGEset TSS.df <- read.table(system.file("extdata/Zf.unfertilized.egg.chr17.ctss", package = "CAGEr")) colnames(TSS.df) <- c("chr", "pos", "strand", "zf_unfertilized_egg") TSS.df$chr <- as.character(TSS.df$chr) TSS.df$pos <- as.integer(TSS.df$pos) TSS.df$strand <- as.character(TSS.df$strand) TSS.df$zf_unfertilized_egg <- as.integer(TSS.df$zf_unfertilized_egg) head(TSS.df)
myCAGEset.coerced <- as(TSS.df, "CAGEset") myCAGEset.coerced
getCTSS(myCAGEset) ctss <- CTSStagCount(myCAGEset) head(ctss) sampleLabels(myCAGEset)
corr.m <- plotCorrelation(myCAGEset, samples = "all", method = "pearson")
mergeSamples(myCAGEset, mergeIndex = c(3,2,4,4,1), mergedSampleLabels = c("zf_unfertilized_egg", "zf_high", "zf_30p_dome", "zf_prim6"))
librarySizes(myCAGEset) plotReverseCumulatives(myCAGEset, fitInRange = c(5, 1000), onePlot = TRUE) normalizeTagCount(myCAGEset, method = "powerLaw", fitInRange = c(5, 1000), alpha = 1.2, T = 5*10^4) exportCTSStoBedGraph(myCAGEset, values = "normalized", format = "bedGraph", oneFile = TRUE) exportCTSStoBedGraph(myCAGEset, values = "normalized", format = "BigWig")
clusterCTSS(object = myCAGEset, threshold = 1, thresholdIsTpm = TRUE, nrPassThreshold = 1, method = "distclu", maxDist = 20, removeSingletons = TRUE, keepSingletonsAbove = 5) tc <- tagClusters(myCAGEset, sample = "zf_unfertilized_egg") head(tc)
cumulativeCTSSdistribution(myCAGEset, clusters = "tagClusters") quantilePositions(myCAGEset, clusters = "tagClusters", qLow = 0.1, qUp = 0.9) tc <- tagClusters(myCAGEset, sample = "zf_unfertilized_egg", returnInterquantileWidth = TRUE, qLow = 0.1, qUp = 0.9) head(tc) exportToBed(object = myCAGEset, what = "tagClusters", qLow = 0.1, qUp = 0.9, oneFile = TRUE) plotInterquantileWidth(myCAGEset, clusters = "tagClusters", tpmThreshold = 3, qLow = 0.1, qUp = 0.9)
aggregateTagClusters(myCAGEset, tpmThreshold = 5, qLow = 0.1, qUp = 0.9, maxDist = 100) consensusCl <- consensusClusters(myCAGEset) head(consensusCl) cumulativeCTSSdistribution(myCAGEset, clusters = "consensusClusters", useMulticore = TRUE) quantilePositions(myCAGEset, clusters = "consensusClusters", qLow = 0.1, qUp = 0.9, useMulticore = TRUE) consensusCl <- consensusClusters(myCAGEset, sample = "zf_unfertilized_egg", returnInterquantileWidth = TRUE, qLow = 0.1, qUp = 0.9) head(consensusCl)
getExpressionProfiles(myCAGEset, what = "consensusClusters", tpmThreshold = 10, nrPassThreshold = 1, method = "som", xDim = 4, yDim = 2) plotExpressionProfiles(myCAGEset, what = "consensusClusters") class3_1 <- extractExpressionClass(myCAGEset, what = "consensusClusters", which = "3_1") head(class3_1)
exportToBed(myCAGEset, what = "consensusClusters", colorByExpressionProfile = TRUE) cumulativeCTSSdistribution(myCAGEset, clusters = "consensusClusters")
scoreShift(myCAGEset, groupX = "zf_unfertilized_egg", groupY = "zf_prim6", testKS = TRUE, useTpmKS = FALSE) shifting.promoters <- getShiftingPromoters(myCAGEset, tpmThreshold = 5, scoreThreshold = 0.6, fdrThreshold = 0.01) head(shifting.promoters)
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.