R/bins_DEXSeq.R

## Deprecated
#.binsDU_DEXSeq <-
#  function(df,targets, group)
#  {
#    countsSt <- ncol(df)-nrow(targets)+1
#    GeneInfo <- data.frame(Gene.Exon=rownames(df), 
#                         matrix(unlist(strsplit(as.character(rownames(df)), ":")), 
#                                nrow=nrow(df), ncol=2, byrow=TRUE ) )
#    colnames(GeneInfo) = c("GeneExon","GeneID","ExonID")
#    countData <- df[,countsSt:ncol(df)]
#    sampleData <- data.frame(condition=group)
#    design1 <- formula( ~ sample + exon + condition:exon )
#    groupID <- GeneInfo$GeneID
#    featureID <- GeneInfo$GeneExon
#    data <- DEXSeqDataSet( countData, sampleData, design1,featureID, groupID )
#    dx <- estimateSizeFactors( data )
#    dx <- estimateDispersions( dx)
#    dx <- testForDEU( dx )
#    dx <- DEXSeqResults( dx)
#    rownames(dx) <- rownames(df)
#    logFC <- dx$exonBaseMean
#    pvalue <- dx$pvalue
#    bin.fdr <- dx$padj
#  
#    splicing_full <- data.frame (df[,-(countsSt:ncol(df))],
#                                logFC, 
#                                pvalue,
#                                bin.fdr,
#                                stringsAsFactors=FALSE)
#    rownames(splicing_full) <- rownames(df)
#    return(splicing_full)
#  }
###################################################################
#
## Deprecated
#.junctionsDU_SUM_DEXSeq <- function(df, 
#                           targets, 
#                           genesde, group)
#  
#{
#  ######################################################
#  jratio<-function(x){
#    x[is.na(x)] <- 0 # we have to remove NAs
#    res <- x[1]/(x[1]+x[2])
#    return(res)  }
#  ##############################################################################################################3  
#  countsSt <- ncol(df)-nrow(targets)+1
#  GeneInfo <- data.frame(Gene.Exon=rownames(df), 
#                       matrix(unlist(strsplit(as.character(rownames(df)), ":")), 
#                       nrow=nrow(df), ncol=2, byrow=TRUE ) )
#  colnames(GeneInfo) <- c("GeneExon","GeneID","ExonID")
#  countData <- df[,countsSt:ncol(df)]
#  sampleData <- data.frame(condition=group)
#  design1 <- formula( ~ sample + exon + condition:exon )
#  groupID <- GeneInfo$GeneID
#  featureID <- GeneInfo$GeneExon
#  data <- DEXSeqDataSet( countData, sampleData, design1,featureID, groupID )
#  data <- estimateSizeFactors( data )
#  dispersions(data) <- 0.1
#  dx <- testForDEU( data )
#  dx <- DEXSeqResults( dx)
#  rownames(dx) <- rownames(df)
#  logFC <- dx$exonBaseMean
#  pvalue <- dx$pvalue
#  fdr <- dx$padj
#  ############those sharing 3', 5', total etc#################
#  jranges <- .createGRangesExpJunctions(rownames(df))
#  if (packageVersion("IRanges")<2.6) 
#  {
#    j.start <- findOverlaps(jranges, ignoreSelf=TRUE,
#                            ignoreRedundant=FALSE,type="start")
#    
#  }
#  else
#  {
#  j.start <- findOverlaps(jranges, drop.self=TRUE,
#                          drop.redundant=FALSE,type="start")
#  }
#  jjstart <- as.data.frame(j.start)
#  jjstart$queryHits <- names(jranges[jjstart$queryHits])
#  jjstart$subjectHits <- names(jranges[jjstart$subjectHits])
#  shareStart <- data.frame(aggregate(subjectHits ~ queryHits, 
#                                     data = jjstart, paste, collapse=";")) 
#  #counts matrix
#  start <- ncol(df) - nrow(targets) +1 #ok
#  end <- ncol(df)#ok
#  #aca no hay cuentas solo recupero los counts usando el indexado de subjectHits
#  dfCountsStart <- data.frame( names=jjstart$queryHits, 
#                            df[jjstart$subjectHits,start:end],
#                            row.names=NULL) #recover counts
#  #tiene como names al query y como counts todos los subjects que dan con ese query. 
#  #en teoria podria haber mas de 1 sbject, por eso hace el aggregate-
#  #si es solo 1 hit deberian coincidir, cruzandose
#  #aca hace el agregate y tengo los counts de todas las junturas que comparten start con esa menos ella
#  dfSumStart <- data.frame(aggregate(. ~ names, data = dfCountsStart, sum))
#  sumJ <- paste(colnames(dfSumStart), "jsum", sep=".")
#  colnames(dfSumStart) <- sumJ
#  rownames(dfSumStart) <-  dfSumStart$names.jsum
#  dfSumStart$names.jsum <- NULL
#  #armo un nuevo data frame
#  dffStart <- data.frame(matrix(NA, nrow =  nrow(df), 
#                              ncol = ncol(dfSumStart)) )
#  rownames(dffStart) <- rownames(df)
#  colnames(dffStart) <- colnames(dfSumStart)
#  mSumStart <- match(row.names(dfSumStart), row.names(dffStart)) 
#  #reordeno el dffSumStart de acuerdo al df
#  dffStart[mSumStart,] <- dfSumStart#OK
#  dffStart[is.na(dffStart)] <- 0
#  mbin_start_hit <- match(shareStart$queryHits, row.names(dffStart))
#  #aca reacomodo el bin_start_hit con el indexado de dffStart
#  bin_start_hit <- as.character(rep("-", nrow(dffStart)) )
#  bin_start_hit[mbin_start_hit] <- shareStart$subjectHits
#  ################################################
#  ratioStart <- data.frame(df[,countsSt:ncol(df)],
#                         dffStart)
#  colnames(ratioStart) <- rep(rownames(targets),2)
#  #aca hay que armar un df itnermedio con la suma por condicion:
#  ff <- rep(targets$condition,2)
#  colnames(ratioStart) <- paste(ff, rep(1:2,each=length(targets$condition)))
#  dfSum <- t(apply(ratioStart, 1, function(x){tapply(as.numeric(x), INDEX=colnames(ratioStart), sum  )}))
#  colnames(dfSum) <- rep(unique(targets$condition),each=2)
#  jratioStartRes <- t(apply(dfSum, 1, function(x){tapply(as.numeric(x), INDEX=colnames(dfSum), jratio )}))
#  ################################################
#  if (packageVersion("IRanges")<2.6) 
#  {
#    j.end <- findOverlaps(jranges, 
#                       ignoreSelf=TRUE,
#                       ignoreRedundant=FALSE,
#                       type="end")
#  }
#  else
#  {
#  j.end <- findOverlaps(jranges, 
#                     drop.self=TRUE,
#                     drop.redundant=FALSE,
#                     type="end")
#  }
#  jjend <- as.data.frame(j.end)
#  jjend$queryHits <- names(jranges[jjend$queryHits])
#  jjend$subjectHits <- names(jranges[jjend$subjectHits])
#  shareEnd <- data.frame(aggregate(subjectHits ~ queryHits,
#                                data = jjend, paste, collapse=";")) 
#  dfCountsEnd <- data.frame( names=jjend$queryHits, 
#                          df[jjend$subjectHits,start:end],
#                          row.names=NULL) #recover counts
#  dfSumEnd <- data.frame(aggregate(. ~ names, data = dfCountsEnd, sum))   
#  sumJ <- paste(colnames(dfSumEnd), "jsum", sep=".")
#  colnames(dfSumEnd) <- sumJ
#  rownames(dfSumEnd) <- dfSumEnd$names.jsum
#  dfSumEnd$names.jsum <- NULL
#  dffEnd  <- data.frame(matrix(NA, nrow =  nrow(df), ncol = ncol(dfSumEnd)) )
#  rownames(dffEnd) <- rownames(df)
#  colnames(dffEnd) <- colnames(dfSumEnd)
#  ########################################################################
#  mSumEnd <- match(row.names(dfSumEnd), row.names(dffEnd))
#  dffEnd[mSumEnd,] <-  dfSumEnd
#  dffEnd[is.na(dffEnd)] <- 0
#  ########################################################################
#  mbin_end_hit <- match(shareEnd$queryHits, row.names(dffEnd))
#  bin_end_hit <- rep("-", nrow(dffEnd))
#  bin_end_hit[mbin_end_hit] <- shareEnd$subjectHits
#  ########################################################################
#  ratioEnd <- data.frame(df[,countsSt:ncol(df)],dffEnd)
#  ff <- rep(targets$condition,2)
#  colnames(ratioEnd) <- paste(ff, rep(1:2,each=length(targets$condition)))
#  dfSum <- t(apply(ratioEnd, 1, function(x){tapply(as.numeric(x), 
#                                                 INDEX=colnames(ratioEnd), sum  )}))
#  colnames(dfSum) <- rep(levels(targets$condition),each=2)
#  jratioEndRes <- t(apply(dfSum, 1, function(x){tapply(as.numeric(x), 
#                                                     INDEX=colnames(dfSum), jratio )}))
#  #########################################################################
#  et_merge <- data.frame(df,                       
#                       logFC,
#                       pvalue, 
#                       fdr,
#                       bin_start_hit,
#                       dffStart,
#                       jratioStartRes,
#                       bin_end_hit,
#                       dffEnd,
#                       jratioEndRes)
#  return(et_merge)
#}                        
###################################################
#
## Deprecated
#.genesDE_DESeq <-
#  function(df, targets, pair)
#  { 
#    countsSt <- ncol(df)-nrow(targets)+1
#    colData <- data.frame(condition=targets$condition, row.names=row.names(targets))
#    #########################################################
#    dds <- DESeqDataSetFromMatrix(countData = df[,countsSt:ncol(df)],
#                                  colData = colData,
#                                  design = ~ condition)
#    dds <- DESeq(dds)
#    res <- results(dds, contrast=c("condition",pair))
#    fdr.gen <- res$padj
#    #########################################################
#    genes_full <- data.frame(df[,-(countsSt:ncol(df))],
#                           logFC=as.numeric(res$log2FoldChange), 
#                           pvalue=as.numeric(res$pvalue), 
#                           gen.fdr=as.numeric(fdr.gen), 
#                           stringsAsFactors=FALSE)
#    rownames(genes_full) <- rownames(df)
#    return(genes_full)
#  }
###################################################

Try the ASpli package in your browser

Any scripts or data that you put into this service are public.

ASpli documentation built on Nov. 8, 2020, 5:21 p.m.