Nothing
## Deprecated
#.binsDU_DEXSeq <-
# function(df,targets, group)
# {
# countsSt <- ncol(df)-nrow(targets)+1
# GeneInfo <- data.frame(Gene.Exon=rownames(df),
# matrix(unlist(strsplit(as.character(rownames(df)), ":")),
# nrow=nrow(df), ncol=2, byrow=TRUE ) )
# colnames(GeneInfo) = c("GeneExon","GeneID","ExonID")
# countData <- df[,countsSt:ncol(df)]
# sampleData <- data.frame(condition=group)
# design1 <- formula( ~ sample + exon + condition:exon )
# groupID <- GeneInfo$GeneID
# featureID <- GeneInfo$GeneExon
# data <- DEXSeqDataSet( countData, sampleData, design1,featureID, groupID )
# dx <- estimateSizeFactors( data )
# dx <- estimateDispersions( dx)
# dx <- testForDEU( dx )
# dx <- DEXSeqResults( dx)
# rownames(dx) <- rownames(df)
# logFC <- dx$exonBaseMean
# pvalue <- dx$pvalue
# bin.fdr <- dx$padj
#
# splicing_full <- data.frame (df[,-(countsSt:ncol(df))],
# logFC,
# pvalue,
# bin.fdr,
# stringsAsFactors=FALSE)
# rownames(splicing_full) <- rownames(df)
# return(splicing_full)
# }
###################################################################
#
## Deprecated
#.junctionsDU_SUM_DEXSeq <- function(df,
# targets,
# genesde, group)
#
#{
# ######################################################
# jratio<-function(x){
# x[is.na(x)] <- 0 # we have to remove NAs
# res <- x[1]/(x[1]+x[2])
# return(res) }
# ##############################################################################################################3
# countsSt <- ncol(df)-nrow(targets)+1
# GeneInfo <- data.frame(Gene.Exon=rownames(df),
# matrix(unlist(strsplit(as.character(rownames(df)), ":")),
# nrow=nrow(df), ncol=2, byrow=TRUE ) )
# colnames(GeneInfo) <- c("GeneExon","GeneID","ExonID")
# countData <- df[,countsSt:ncol(df)]
# sampleData <- data.frame(condition=group)
# design1 <- formula( ~ sample + exon + condition:exon )
# groupID <- GeneInfo$GeneID
# featureID <- GeneInfo$GeneExon
# data <- DEXSeqDataSet( countData, sampleData, design1,featureID, groupID )
# data <- estimateSizeFactors( data )
# dispersions(data) <- 0.1
# dx <- testForDEU( data )
# dx <- DEXSeqResults( dx)
# rownames(dx) <- rownames(df)
# logFC <- dx$exonBaseMean
# pvalue <- dx$pvalue
# fdr <- dx$padj
# ############those sharing 3', 5', total etc#################
# jranges <- .createGRangesExpJunctions(rownames(df))
# if (packageVersion("IRanges")<2.6)
# {
# j.start <- findOverlaps(jranges, ignoreSelf=TRUE,
# ignoreRedundant=FALSE,type="start")
#
# }
# else
# {
# j.start <- findOverlaps(jranges, drop.self=TRUE,
# drop.redundant=FALSE,type="start")
# }
# jjstart <- as.data.frame(j.start)
# jjstart$queryHits <- names(jranges[jjstart$queryHits])
# jjstart$subjectHits <- names(jranges[jjstart$subjectHits])
# shareStart <- data.frame(aggregate(subjectHits ~ queryHits,
# data = jjstart, paste, collapse=";"))
# #counts matrix
# start <- ncol(df) - nrow(targets) +1 #ok
# end <- ncol(df)#ok
# #aca no hay cuentas solo recupero los counts usando el indexado de subjectHits
# dfCountsStart <- data.frame( names=jjstart$queryHits,
# df[jjstart$subjectHits,start:end],
# row.names=NULL) #recover counts
# #tiene como names al query y como counts todos los subjects que dan con ese query.
# #en teoria podria haber mas de 1 sbject, por eso hace el aggregate-
# #si es solo 1 hit deberian coincidir, cruzandose
# #aca hace el agregate y tengo los counts de todas las junturas que comparten start con esa menos ella
# dfSumStart <- data.frame(aggregate(. ~ names, data = dfCountsStart, sum))
# sumJ <- paste(colnames(dfSumStart), "jsum", sep=".")
# colnames(dfSumStart) <- sumJ
# rownames(dfSumStart) <- dfSumStart$names.jsum
# dfSumStart$names.jsum <- NULL
# #armo un nuevo data frame
# dffStart <- data.frame(matrix(NA, nrow = nrow(df),
# ncol = ncol(dfSumStart)) )
# rownames(dffStart) <- rownames(df)
# colnames(dffStart) <- colnames(dfSumStart)
# mSumStart <- match(row.names(dfSumStart), row.names(dffStart))
# #reordeno el dffSumStart de acuerdo al df
# dffStart[mSumStart,] <- dfSumStart#OK
# dffStart[is.na(dffStart)] <- 0
# mbin_start_hit <- match(shareStart$queryHits, row.names(dffStart))
# #aca reacomodo el bin_start_hit con el indexado de dffStart
# bin_start_hit <- as.character(rep("-", nrow(dffStart)) )
# bin_start_hit[mbin_start_hit] <- shareStart$subjectHits
# ################################################
# ratioStart <- data.frame(df[,countsSt:ncol(df)],
# dffStart)
# colnames(ratioStart) <- rep(rownames(targets),2)
# #aca hay que armar un df itnermedio con la suma por condicion:
# ff <- rep(targets$condition,2)
# colnames(ratioStart) <- paste(ff, rep(1:2,each=length(targets$condition)))
# dfSum <- t(apply(ratioStart, 1, function(x){tapply(as.numeric(x), INDEX=colnames(ratioStart), sum )}))
# colnames(dfSum) <- rep(unique(targets$condition),each=2)
# jratioStartRes <- t(apply(dfSum, 1, function(x){tapply(as.numeric(x), INDEX=colnames(dfSum), jratio )}))
# ################################################
# if (packageVersion("IRanges")<2.6)
# {
# j.end <- findOverlaps(jranges,
# ignoreSelf=TRUE,
# ignoreRedundant=FALSE,
# type="end")
# }
# else
# {
# j.end <- findOverlaps(jranges,
# drop.self=TRUE,
# drop.redundant=FALSE,
# type="end")
# }
# jjend <- as.data.frame(j.end)
# jjend$queryHits <- names(jranges[jjend$queryHits])
# jjend$subjectHits <- names(jranges[jjend$subjectHits])
# shareEnd <- data.frame(aggregate(subjectHits ~ queryHits,
# data = jjend, paste, collapse=";"))
# dfCountsEnd <- data.frame( names=jjend$queryHits,
# df[jjend$subjectHits,start:end],
# row.names=NULL) #recover counts
# dfSumEnd <- data.frame(aggregate(. ~ names, data = dfCountsEnd, sum))
# sumJ <- paste(colnames(dfSumEnd), "jsum", sep=".")
# colnames(dfSumEnd) <- sumJ
# rownames(dfSumEnd) <- dfSumEnd$names.jsum
# dfSumEnd$names.jsum <- NULL
# dffEnd <- data.frame(matrix(NA, nrow = nrow(df), ncol = ncol(dfSumEnd)) )
# rownames(dffEnd) <- rownames(df)
# colnames(dffEnd) <- colnames(dfSumEnd)
# ########################################################################
# mSumEnd <- match(row.names(dfSumEnd), row.names(dffEnd))
# dffEnd[mSumEnd,] <- dfSumEnd
# dffEnd[is.na(dffEnd)] <- 0
# ########################################################################
# mbin_end_hit <- match(shareEnd$queryHits, row.names(dffEnd))
# bin_end_hit <- rep("-", nrow(dffEnd))
# bin_end_hit[mbin_end_hit] <- shareEnd$subjectHits
# ########################################################################
# ratioEnd <- data.frame(df[,countsSt:ncol(df)],dffEnd)
# ff <- rep(targets$condition,2)
# colnames(ratioEnd) <- paste(ff, rep(1:2,each=length(targets$condition)))
# dfSum <- t(apply(ratioEnd, 1, function(x){tapply(as.numeric(x),
# INDEX=colnames(ratioEnd), sum )}))
# colnames(dfSum) <- rep(levels(targets$condition),each=2)
# jratioEndRes <- t(apply(dfSum, 1, function(x){tapply(as.numeric(x),
# INDEX=colnames(dfSum), jratio )}))
# #########################################################################
# et_merge <- data.frame(df,
# logFC,
# pvalue,
# fdr,
# bin_start_hit,
# dffStart,
# jratioStartRes,
# bin_end_hit,
# dffEnd,
# jratioEndRes)
# return(et_merge)
#}
###################################################
#
## Deprecated
#.genesDE_DESeq <-
# function(df, targets, pair)
# {
# countsSt <- ncol(df)-nrow(targets)+1
# colData <- data.frame(condition=targets$condition, row.names=row.names(targets))
# #########################################################
# dds <- DESeqDataSetFromMatrix(countData = df[,countsSt:ncol(df)],
# colData = colData,
# design = ~ condition)
# dds <- DESeq(dds)
# res <- results(dds, contrast=c("condition",pair))
# fdr.gen <- res$padj
# #########################################################
# genes_full <- data.frame(df[,-(countsSt:ncol(df))],
# logFC=as.numeric(res$log2FoldChange),
# pvalue=as.numeric(res$pvalue),
# gen.fdr=as.numeric(fdr.gen),
# stringsAsFactors=FALSE)
# rownames(genes_full) <- rownames(df)
# return(genes_full)
# }
###################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.